MC100LVEL13

3.3 V ECL Dual 1:3 Fanout Buffer

Description

The MC100LVEL13 is a dual, fully differential 1:3 fanout buffer. The Low Output-Output Skew of the device makes it ideal for distributing two different frequency synchronous signals.
The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to V_{EE}, The $\overline{\mathrm{D}}$ input will bias around $\mathrm{V}_{\mathrm{CC}} / 2$ and the Q output will go LOW.

Features

- 500 ps Typical Propagation Delays
- 50 ps Output-Output Skews
- ESD Protection: > 2 kV Human Body Model
- The 100 Series Contains Temperature Compensation
- PECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.8 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range: $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.8 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity: Level 3 (Pb-Free)
- Flammability Rating: UL 94 V-0 @ 0.125 in, Oxygen Index: 28 to 34
- Transistor Count $=143$ Devices
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-20 WB
DW SUFFIX
CASE 751D

MARKING DIAGRAM*

A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping \dagger
MC100LVEL13DWG	SOIC-20 WB (Pb-Free)	38 Units / Tube
MC100LVEL13DWR2G	SOIC-20 WB (Pb-Free)	1000 Tape \& Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC100LVEL13

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Qna, $\overline{\text { Qna }}$	ECL Differential Clock Outputs
Qnb, $\overline{\text { Qnb }}$	ECL Differential Clock Outputs
CLKn, $\overline{\text { CLKn }}$	ECL Differential Clock Inputs
VCC	Positive Supply
VEE	Negative Supply

Warning: All V_{CC} and V_{EE} pins must be externally connected to
Power Supply to guarantee proper operation.
Figure 1. Logic Diagram and Pinout: 20-Lead SOIC
(Top View)

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8 to 0	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8 to 0	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & V_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 6 \text { to } 0 \\ -6 \text { to } 0 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-20 WB SOIC-20 WB	$\begin{aligned} & 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-20 WB	30 to 35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	<2 to $3 \mathrm{sec} @ 260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. LVPECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		30	38		30	38		32	40	mA
V_{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential) (Note 3) $\begin{aligned} & V_{P P}<500 \mathrm{mV} \\ & V_{P P} \geq 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 2.9 \\ & 2.9 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current CLKn CLKn	$\begin{gathered} 0.5 \\ -300 \end{gathered}$			$\begin{gathered} 0.5 \\ -300 \end{gathered}$			$\begin{gathered} 0.5 \\ -300 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{C C}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{I H C M R}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{pp} min and 1 V .

Table 4. LVNECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		30	38		30	38		32	40	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
V_{OL}	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
$\mathrm{V}_{\text {IHCMR }}$	$\begin{aligned} & \text { Input HIGH Voltage Common Mode } \\ & \text { Range (Differential) (Note 3) } \\ & V_{\mathrm{PP}}<500 \mathrm{mV} \\ & \mathrm{~V}_{\mathrm{PP}} \geq 500 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{aligned} & -2.0 \\ & -1.8 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & -2.1 \\ & -1.9 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & -2.1 \\ & -1.9 \end{aligned}$		$\begin{aligned} & -0.4 \\ & -0.4 \end{aligned}$	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current CLKn CLKn	$\begin{gathered} 0.5 \\ -300 \\ \hline \end{gathered}$			$\begin{gathered} 0.5 \\ -300 \end{gathered}$			$\begin{gathered} 0.5 \\ -300 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{I H C M R}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V .

Table 5. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{E E}=-3.3 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Toggle Frequency		TBD			TBD			TBD		GHz
$\begin{aligned} & \text { tpLH } \\ & t_{\text {PPHL }} \\ & \hline \end{aligned}$	Propagation Delay CLK to Q/Q	410		600	430	500	620	450		640	ps
$\mathrm{t}_{\text {sk(0) }}$	Output-Output Skew Any Qa to Qa, Any Qb to Qb Any Qa to Any Qb			$\begin{aligned} & 50 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 75 \end{aligned}$			$\begin{aligned} & 50 \\ & 75 \end{aligned}$	ps
$\mathrm{t}_{\text {skew }}$	Duty Cycle Skew \|tplh- ${ }_{\text {PrHL }}$ \|			50			50			50	ps
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V_{PP}	Input Swing (Note 2)	150		1000	150		1000	150		1000	mV
t_{r} t_{f}	Output Rise/Fall Times Q (20\%-80\%)	230		500	230		500	230		500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. V_{EE} can vary $\pm 0.3 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{PP}}(\mathrm{min})$ is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS $^{\text {M }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family $^{\text {AN1568/D }}-$ Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Buffer category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
MPC962309EJ-1H NB4N121KMNG IDT49FCT805ASO MK2308S-1HILF PL133-27GI-R NB3L02FCT2G NB3L03FCT2G ZL40203LDG1 ZL40200LDG1 ZL40205LDG1 9FG1200DF-1LF 9FG1001BGLF ZL40202LDG1 PI49FCT20802QE SL2305SC-1T NB7L1008MNG NB7L14MN1G PI49FCT20807QE PI6C4931502-04LIEX ZL80002QAB1 PI6C4931504-04LIEX PI6C10806BLEX ZL40226LDG1 8T73S208B-01NLGI SY75578LMG PI49FCT32805QEX PL133-27GC-R CDCV304PWG4 MC10LVEP11DG MC10EP11DTG MC100LVEP11DG MC100E111FNG MC100EP11DTG NB6N11SMNG NB7L14MMNG NB6L11MMNG NB6L14MMNR2G NB6L611MNG PL123-02NGI-R NB3N111KMNR4G ADCLK944BCPZ-R7 ZL40217LDG1 NB7LQ572MNG HMC940LC4BTR ADCLK946BCPZ-REEL7 ADCLK946BCPZ ADCLK854BCPZ ADCLK905BCPZ-R2 ADCLK905BCPZ-R7 ADCLK905BCPZ-WP

