MC10E1652

5V, -5V Dual ECL Output Comparator with Latch

The MC10E1652 is fabricated using ON Semiconductor's advanced MOSAIC III process and is output compatible with 10 H logic devices. In addition, the device is available in a 20 -pin surface mount package. However, the MC10E1652 provides user programmable hysteresis.

The latch enable ($\overline{\mathrm{LEN}_{\mathrm{a}}}$ and $\overline{\mathrm{LEN}_{\mathrm{b}}}$) input pins operate from standard ECL 10H logic levels. When the latch enable is at a logic high level, the MC 10 E 1652 acts as a comparator; hence, Q will be at a logic high level if $\mathrm{V} 1>\mathrm{V} 2(\mathrm{~V} 1$ is more positive than V 2$)$. Q is the complement of Q . When the latch enable input goes to a low logic level, the outputs are latched in their present state, providing the latch enable setup and hold time constraints are met. The level of input hysteresis is controlled by applying a bias voltage to the HYS pin.

Features

- Typical 3.0 dB Bandwidth $>1.0 \mathrm{GHz}$
- Typical V to Q Propagation Delay of 775 ps
- Typical Output Rise/Fall of 350 ps
- Common Mode Range -2.0 V to +3.0 V
- Individual Latch Enables
- Differential Outputs
- Operating Mode: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$
- Programmable Input Hysteresis
- No Internal Input Pulldown Resistors
- ESD Protection: Human Body Model; > 2 kV , Machine Model; > 100 V
- Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
- Moisture Sensitivity Level 3

For Additional Information, see Application Note AND8003/D

- Flammability Rating: UL $94 \mathrm{~V}-\mathrm{O} @ 0.125 \mathrm{in}$,

Oxygen Index: 28 to 34

- Transistor Count $=85$ devices
- These are $\mathrm{Pb}-$ Free Devices*

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
 DIAGRAM

1652FNG

PLCC-20 FN SUFFIX
A = Assembly Location
YY = Year
WW = Work Week
$=\mathrm{Pb}-$ Free Package

[^0]
MC10E1652

* All V_{CC} and $\mathrm{V}_{\mathrm{CCO}}$ pins are NOT tied together on the die.

Warning: All V_{CC}, GND, and $\mathrm{V}_{\text {EE }}$ pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. Logic Diagrams and Pinout Assignments

$V_{\mathrm{EE}}=-5.2 \mathrm{~V}$
$\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}$
Figure 2. Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Qa, $\overline{\text { Qa }}$	ECL Differential Outputs (a)
Qb, $\overline{\text { Qb }}$	ECL Differential Outputs (b)
LENa, LENb	ECL Latch Enable
V1a, V1b	Input Comparator 1
V2a, V2b	Input Comparator 2
HYS	Hysteresis Bias Voltage Control Input
VCC	Positive Supply
VEE $^{\text {NC }}$	Negative Supply
GND	No Connect

Table 2. FUNCTION TABLE

$\overline{\text { LEN }}$	V1, V2	Function
H	V1 > V2	H
H	$\mathrm{V} 1<\mathrm{V} 2$	L
L	X	Latched

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Units	
VSUP	Total Supply Voltage	$\left\|\mathrm{V}_{\mathrm{EE}}\right\|+\left\|\mathrm{V}_{\mathrm{CC}}\right\|$		12.0	V	
VPP	Differential Input Voltage	\|V1 - V2			3.7	V
V_{1}	Input Voltage			$\mathrm{V}_{\mathrm{EE}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	V	
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	
I_{BB}	$\mathrm{V}_{\text {BB }}$ Sink/Source			± 0.5	mA	
TA	Operating Temperature Range			0 to +85	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$	
θ JA	Thermal Resistance (Junction to Ambient)	$\begin{aligned} & \hline 0 \text { LFPM } \\ & 500 \text { LFPM } \end{aligned}$	$\begin{aligned} & 28 \text { PLCC } \\ & 28 \text { PLCC } \end{aligned}$	$\begin{aligned} & 63.5 \\ & 43.5 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$	
$\theta_{\text {JC }}$	Thermal Resistance (Junction to Case)	std bd	28 PLCC	22 to 26	${ }^{\circ} \mathrm{C} / \mathrm{W}$	
V_{EE}	Operating Range	GND = 0 V		-4.2 to -5.7	V	
$\mathrm{T}_{\text {sol }}$	Wave Solder Pb-Free	$\leq 3 \mathrm{sec} @ 260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 4. DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Note 1)

Symbol	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V_{OH}	Output HIGH Voltage (Note 2)	-1020		-840	-980		-810	-920		-735	mV
$\mathrm{V}_{\text {OL }}$	Output Low Voltage (Note 2)	-1950		-1630	-1950		-1630	-1950		-1600	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (LEN)	-1.95		-1.48	-1.95		-1.48	-1.95		-1.45	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage (LEN)	-1.17		-0.84	-1.13		-0.81	-1.07		-0.735	mV
$\begin{aligned} & \hline \mathrm{II} \\ & \mathrm{I}_{\mathrm{IH}} \end{aligned}$	Input Current (V1, V2) Input HIGH Current (LEN)			$\begin{gathered} 65 \\ 150 \end{gathered}$			$\begin{gathered} 65 \\ 150 \end{gathered}$			$\begin{gathered} 65 \\ 150 \end{gathered}$	$\mu \mathrm{A}$
$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{CC}} \\ \mathrm{I}_{\mathrm{EE}} \\ \hline \end{array}$	Positive Supply Current Negative Supply Current			$\begin{gathered} 50 \\ -55 \end{gathered}$			$\begin{gathered} 50 \\ -55 \end{gathered}$			$\begin{gathered} 50 \\ -55 \end{gathered}$	mA
VCMR	Common Mode Range (Note 3)	-2.0		3.0	-2.0		3.0	-2.0		3.0	V
Hys	Hysteresis (Note 4)		27			27			30		mV
$\mathrm{V}_{\text {skew }}$	Hysteresis Skew (Note 5)		-1.0			-1.0			0		mV
$\mathrm{C}_{\text {in }}$	Input Capacitance PLCC			2			2			2	pF

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input $V_{I L}$ and $V_{I H}$ parameters vary $1: 1$ with $V_{C C}$. Output $V_{O H}$ and $V_{O L}$ parameters vary $1: 1$ with GND.
2. Outputs are terminated through a 50 ohm resistor to GND-2 volts.
3. VCMR Min varies $1: 1$ with V_{EE}; Max varies $1: 1$ with V_{CC}.
4. The HYS pin programming characterization information is shown in Figure 2. The hysteresis values indicated in the data sheet are for the condition in which the voltage on the HYS pin is set to $\mathrm{V}_{\text {EE }}$.
5. Hysteresis skew ($\mathrm{V}_{\text {skew }}$) is provided to indicate the offset of the hysteresis window. For example, at $25^{\circ} \mathrm{C}$ the nominal hysteresis value is 27 mV and the $\mathrm{V}_{\text {skew }}$ value indicates that the hysteresis was skewed from the reference level by 1 mV in the negative direction. Hence the hysteresis window ranged from 14 mV below the reference level to 13 mV above the reference level. All hysteresis measurements were determined using a reference voltage of 0 mV . The hysteresis skew values apply over the programming range shown in Figure 2.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 5 \% ; \mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$ (Note 6)

	Characteristic	$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Toggle Frequency		TBD			> 1.0			TBD		GHz
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay to Output (Note 7) V to Q LEN to Q	$\begin{aligned} & 750 \\ & 550 \end{aligned}$	$\begin{aligned} & 900 \\ & 725 \end{aligned}$	$\begin{gathered} 1050 \\ 900 \end{gathered}$	$\begin{aligned} & 775 \\ & 550 \end{aligned}$	$\begin{aligned} & 925 \\ & 750 \end{aligned}$	$\begin{gathered} 1075 \\ 900 \end{gathered}$	$\begin{aligned} & 850 \\ & 650 \end{aligned}$	$\begin{gathered} 1025 \\ 825 \end{gathered}$	$\begin{aligned} & 1200 \\ & 1000 \end{aligned}$	ps
t_{s}	Setup Time V	450	300		450	300		550	350		ps
t_{h}	Enable Hold Time V	-50	-250		-50	-250		-100	-250		ps
$t_{\text {pw }}$	Minimum Pulse Width	400			400			400			ps
$\mathrm{t}_{\text {skew }}$	Within Device Skew (Note 8)		15			15			15		ps
$\mathrm{t}_{\text {JITTER }}$	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
$\mathrm{T}_{\text {DE }}$	$\begin{aligned} & \text { Delay Dispersion } \\ & \qquad \begin{array}{r} \text { (ECL Levels) } \\ (\text { Notes } 910) \\ (\text { Notes } 9,11) \end{array} \end{aligned}$					$\begin{gathered} 100 \\ 60 \end{gathered}$					ps
T_{DL}	$\begin{aligned} & \text { Delay Dispersion } \\ & \qquad \text { (TTL Levels) (Notes 12, 13) } \\ & \text { (Notes 11, 12) } \end{aligned}$					$\begin{aligned} & 350 \\ & 100 \end{aligned}$					ps
VPP	Differential Input Voltage $\quad\|\mathrm{V} 1-\mathrm{V} 2\|$			3.7			3.7			3.7	V
t_{r} t_{f}	Rise/Fall Times (20-80\%)	225	325	475	225	325	475	250	375	500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
6. Input V_{IL} and V_{IH} parameters vary $1: 1$ with V_{CC}. Output V_{OH} and V_{OL} parameters vary $1: 1$ with GND.
7. The propagation delay is measured from the crosspoint of the input signal and the threshold value to the crosspoint of the Q and \bar{Q} output signals. For propagation delay measurements the threshold level $\left(V_{T H R}\right)$ is centered about an 850 mV input logic swing with a slew rate of $0.75 \mathrm{~V} / \mathrm{NS}$. There is an insignificant change in the propagation delay over the input common mode range.
8. $t_{\text {skew }}$ is the propagation delay skew between comparator A and comparator B for a particular part under identical input conditions.
9. Refer to Figure 4 and note that the input is at 850 mV ECL levels with the input threshold range between the 20% and 80% points. The delay is measured from the crosspoint of the input signal and the threshold value to the crosspoint of the Q and $\overline{\mathrm{Q}}$ output signals.
10. The slew rate is $0.25 \mathrm{~V} / \mathrm{NS}$ for input rising edges.
11. The slew rate is $0.75 \mathrm{~V} / \mathrm{NS}$ for input rising edges.
12. Refer to Figure 5 and note that the input is at 2.5 V TTL levels with the input threshold range between the 20% and 80% points. The delay is measured from the crosspoint of the input signal and the threshold value to the crosspoint of the Q and Q output signals.
13. The slew rate is $0.3 \mathrm{~V} / \mathrm{NS}$ for input rising edges.

APPLICATIONS INFORMATION

The timing diagram (Figure 5.) is presented to illustrate the MC10E1652's compare and latch features. When the signal on the LEN pin is at a logic high level, the device is operating in the "compare mode," and the signal on the input arrives at the output after a nominal propagation delay (tPHL^{2}, $\left.\mathrm{t}_{\mathrm{PLH}}\right)$. The input signal must be asserted for a time, t_{s}, prior to the negative going transition on $\overline{\mathrm{LEN}}$ and held for a time, t_{h}, after the LEN transition. After time t_{h}, the latch is operating in the "latch mode," thus transitions on the input do not appear at the output. The device continues to operate in the "latch mode" until the latch is asserted once again. Moreover, the LEN pulse must meet the minimum pulse width (t_{pw}) requirement to effect the correct input-output relationship. Note that the LEN waveform in Figure 5. shows the $\overline{\mathrm{LEN}}$ signal swinging around a reference labeled $\mathrm{VBB}_{\text {INT }}$; this waveform emphasizes the requirement that $\overline{\text { LEN }}$ follow typical ECL 10KH logic levels because
$\mathrm{VBB}_{\text {INT }}$ is the internally generated reference level, hence is nominally at the ECL VBB level.

Finally, V_{OD} is the input voltage overdrive and represents the voltage level beyond the threshold level $\left(\mathrm{V}_{\mathrm{THR}}\right)$ to which the input is driven. As an example, if the threshold level is set on one of the comparator inputs as 80 mV and the input signal swing on the complementary input is from zero to 100 mV , the positive going overdrive would be 20 mV and the negative going overdrive would be 80 mV . The result of differing overdrive levels is that the devices have shorter propagation delays with greater overdrive because the threshold level is crossed sooner than the case of lower overdrive levels. Typically, semiconductor manufactures refer to the threshold voltage as the input offset voltage (VOS) since the threshold voltage is the sum of the externally supplied reference voltage and inherent device offset voltage.

Figure 5. Input/Output Timing Diagram

MC10E1652

DELAY DISPERSION

Under a constant set of input conditions comparators have a specified nominal propagation delay. However, since propagation delay is a function of input slew rate and input voltage overdrive the delay dispersion parameters, T_{DE} and T_{DT}, are provided to allow the user to adjust for these variables (where T_{DE} and T_{DT} apply to inputs with standard ECL and TTL levels, respectively).

Figure 6. and Figure 7. define a range of input conditions which incorporate varying input slew rates and input voltage overdrive. For input parameters that adhere to these constraints the propagation delay can be described as:

$$
\mathrm{T}_{\mathrm{NOM}} \pm \mathrm{T}_{\mathrm{DE}}\left(\text { or } \mathrm{T}_{\mathrm{DT}}\right)
$$

Figure 6. ECL Dispersion Test Input Conditions
where $\mathrm{T}_{\text {NOM }}$ is the nominal propagation delay. $\mathrm{T}_{\text {NOM }}$ accounts for nonuniformity introduced by temperature and voltage variability, whereas the delay dispersion parameter takes into consideration input slew rate and input voltage overdrive variability. Thus a modified propagation delay can be approximated to account for the effects of input conditions that differ from those under which the parts where tested. For example, an application may specify an ECL input with a slew rate of $0.25 \mathrm{~V} / \mathrm{NS}$, an overdrive of 17 mV and a temperature of $25^{\circ} \mathrm{C}$, the delay dispersion parameter would be 100 ps . The modified propagation delay would be

$$
775 \mathrm{ps} \pm 100 \mathrm{ps}
$$

Figure 7. TTL Dispersion Test Input Conditions

MC10E1652

Figure 8. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping †
MC10E1652FNG	PLCC-20 (Pb-Free)	46 Units / Rail
MC10E1652FNR2G	PLCC-20 (Pb-Free)	$500 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{\text {T }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

20 LEAD PLCC
 CASE 775-02 ISSUE G

DATE 06 APR 2021

SCALE 1:1

VIEW S

NOTES:

1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982.
2. DIMENSIONS IN INCHES.
3. DATUMS - L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD PARTING LINE.
4. DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
5. DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
6. DIMENSIONS IN THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY
EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE
BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY
MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY
7. DIMENSION H DOES NOT INCLUDE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.385	0.395	9.78	10.03
B	0.385	0.395	9.78	10.03
C	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050 BSC		1.27	
BSC				
H	0.026	0.032	0.66	0.81
J	0.020	---	0.51	---
K	0.025	---	0.64	---
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
V	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
\mathbf{X}	0.042	0.056	1.07	1.42
Y	---	0.020	---	0.50
Z	2°	10°	$2{ }^{\circ}$	10°
G1	0.310	0.330	7.88	8.38
K1	0.040	---	1.02	---

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\stackrel{\mathrm{}}{ }$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42594B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 20 LEAD PLCC | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analog Comparators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
SC2903VDR2G LM2901SNG LM339SNG 55122 5962-8757203IA NTE911 5962-8751601DA LM339EDR2G NTE922 SC2901DR2G
LM2903M/TR LM2903F-E2 MCP6544-EP MCP6542T-E/MS LM2901EDR2G TS391SN2T1G LM111JG LM239APT HMC675LC3CTR 5962-8765801PA MAX9024AUD+ LT6700HVIS6-2\#TRMPBF 5962-8765902CA ADCMP394ARZ-RL7 LM339AMX LTC1440IMS8\#PBF AZV331KSTR-G1 LTC1841IS8\#PBF LTC1440CN8\#PBF LTC1542CS8\#PBF LTC1445CS\#PBF TL331VSN4T3G LT6700IDCB1\#TRMPBF LTC1042CN8\#PBF LTC1540CMS8\#PBF LT6703CDC-2\#TRMPBF ADCMP607BCPZ-R7 LT1720CDD\#PBF LTC1040CN\#PBF LT6700MPDCB-1\#TRMPBF LT6700IDCB-3\#TRMPBF LTC1440IS8\#PBF S-89431ACNC-HBVTFG CMP402GSZREEL NTE1718 NTE943 NTE943M NTE943SM TA75S393F,LF(T ALD2301APAL

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ON Semiconductor and UN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

