MC10EP90, MC100EP90

Translator, Triple ECL Input to LVPECL / PECL Output

Description

The MC10/100EP90 is a TRIPLE ECL TO LVPECL/PECL translator. The device receives differential LVECL or ECL signals and translates them to differential LVPECL or PECL output signals.
A $V_{B B}$ output is provided for interfacing with Single-Ended LVECL or ECL signals at the input. If a Single-Ended input is to be used the V_{BB} output should be connected to the D input. The active signal would then drive the D input. When used the V_{BB} output should be bypassed to ground by a $0.01 \mu \mathrm{~F}$ capacitor. The V_{BB} output is designed to act as the switching reference for the EP90 under Single-Ended input switching conditions, as a result this pin can only source/sink up to 0.5 mA of current.

To accomplish the level translation the EP90 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} connected to the negative supply.

The 100 Series contains temperature compensation.

Features

- 260 ps Typical Propagation Delay
- Maximum Frequency > 3 GHz Typical
- Voltage Supplies $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V , GND $=0 \mathrm{~V}$
- Open Input Default State
- Safety Clamp on Inputs
- Fully Differential Design
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- VBB Output
- These are $\mathrm{Pb}-$ Free Devices*

[^0]ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.
ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

\qquad

MC10EP90, MC100EP90

Warning: All $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{EE}}$ and $G N D$ pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. TSSOP-20 (Top View) and Logic Diagram
Table 1. PIN DESCRIPTION

PIN	FUNCTION
$\mathrm{Q}(0: 2), \overline{\mathrm{Q}}(0: 2)$	Differential LVPECL or PECL Outputs
$\mathrm{D}(0: 2)^{\star}, \overline{\mathrm{D}}(0: 2)^{*}$	Differential LVECL or ECL Inputs
V_{CC}	Positive Supply
GND	Ground
V_{EE}	Negative Supply
V_{BB}	Output Reference Supply

* Pins will default LOW when left open.

Table 2. FUNCTION TABLE

Function	$\mathrm{V}_{\mathbf{C C}}$	$\mathbf{G N D}$	$\mathbf{V}_{\text {EE }}$
-5 V ECL to 5 V PECL	5 V	0 V	-5 V
-5 V ECL to 3.3 V PECL	3.3 V	0 V	-5 V
-3.3 V ECL to 5 V PECL	5 V	0 V	-3.3 V
-3.3 V ECL to 3.3 V PECL	3.3 V	0 V	-3.3 V

Table 3. ATTRIBUTES

Characteristics	Value	
Internal Input Pulldown Resistor	$75 \mathrm{k} \Omega$	
Internal Input Pullup Resistor	N/A	
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$\begin{gathered} >2 \mathrm{kV} \\ >200 \mathrm{~V} \\ >2 \mathrm{kV} \end{gathered}$	
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb Pkg	Pb-Free Pkg
TSSOP-20	Level 1	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
Transistor Count	350 Devices	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

1. For additional information, refer to Application Note AND8003/D.

MC10EP90, MC100EP90

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	GND $=0 \mathrm{~V}$		6	V
V_{EE}	NECL Mode Power Supply	GND $=0 \mathrm{~V}$		-6	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \text { GND }=0 \mathrm{~V} \\ & \text { GND }=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
I_{BB}	V_{BB} Sink/Source			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	$\begin{array}{\|l\|} \hline 0 \mathrm{lfpm} \\ 500 \mathrm{lfpm} \end{array}$	$\begin{aligned} & \hline \text { TSSOP-20 } \\ & \text { TSSOP-20 } \end{aligned}$	$\begin{aligned} & 140 \\ & 100 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-20	23 to 41	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave SolderPb $\mathrm{Pb}-\mathrm{Free}$	$\begin{aligned} & <2 \text { to } 3 \sec @ 248^{\circ} \mathrm{C} \\ & <2 \text { to } 3 \sec @ 260^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 10EP DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V ; $\mathrm{GND}=0 \mathrm{~V}$ (Note 2)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	5	13	20	5	13	20	5	13	20	mA
ICC	Positive Power Supply Current	43	55	67	43	55	67	43	55	67	mA
V_{OH}	Output HIGH Voltage (Note 3)	2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 3)	1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V_{BB}	Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}+}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
2. Input and output parameters vary $1: 1$ with V_{CC}.
3. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
4. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}$, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 6. 10EP DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V ; $\mathrm{GND}=0 \mathrm{~V}$ (Note 5)

Symbol	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	5	13	20	5	13	20	5	13	20	mA
ICC	Positive Power Supply Current	43	55	67	43	55	67	43	55	67	mA
V_{OH}	Output HIGH Voltage (Note 6)	3865	3990	4115	3930	4055	4180	3990	4115	4240	mV
V ${ }_{\text {OL }}$	Output LOW Voltage (Note 6)	3065	3190	3315	3130	3255	3380	3190	3315	3440	mV
$\mathrm{V}_{1 \mathrm{H}}$	Input HIGH Voltage (Single-Ended)	-1210		-885	-1145		-820	-1085		-760	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V_{BB}	Output Voltage Reference	-1510	-1410	-1310	-1445	-1345	-1245	-1385	-1285	-1185	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7)	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	$\mathrm{V}_{\mathrm{EE}+}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
5. Input and output parameters vary $1: 1$ with V_{CC}.
6. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
7. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 7. 100EP DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V ; GND $=0 \mathrm{~V}$ (Note 8)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$l_{\text {EE }}$	Negative Power Supply Current	5	13	20	5	13	20	5	13	20	mA
ICC	Positive Power Supply Current	45	58	70	50	62	75	53	65	78	mA
V_{OH}	Output HIGH Voltage (Note 9)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 9)	1305	1480	1605	1305	1480	1605	1305	1480	1605	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-885	-1225		-885	-1225		-885	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10)	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}}+2.0$		0.0	$\mathrm{V}_{\mathrm{EE}+}+2.0$		0.0	V
I_{H}	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
8. Input and output parameters vary $1: 1$ with $V_{C C}$.
9. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
10. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 8. 100EP DC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}$ to -3.0 V ; $\mathrm{GND}=0 \mathrm{~V}$ (Note 11)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{l}_{\text {EE }}$	Negative Power Supply Current	5	13	20	5	13	20	5	13	20	mA
ICc	Positive Power Supply Current	45	58	70	50	62	75	53	65	78	mA
V_{OH}	Output HIGH Voltage (Note 12)	3855	3980	4105	3855	3980	4105	3855	3980	4105	mV
V_{OL}	Output LOW Voltage (Note 12)	3005	3180	3305	3005	3180	3305	3005	3180	3305	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1225		-885	-1225		-885	-1225		-885	mV
V_{IL}	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
$\mathrm{V}_{\text {BB }}$	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	$\mathrm{V}_{\mathrm{EE}+2.0}$		0.0	V
IIH	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current	0.5			0.5			0.5			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
11. Input and output parameters vary $1: 1$ with V_{CC}.
12. All loading with 50Ω to $\mathrm{V}_{\mathrm{cc}}-2.0 \mathrm{~V}$.
13. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{E E}$, max varies $1: 1$ with V_{CC}.. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 9. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to $-5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 5.5 V ; $\mathrm{GND}=0 \mathrm{~V}$ (Note 14)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{f}_{\text {max }}$	Maximum Frequency (See Figure $2 \mathrm{~F}_{\text {max }} / \mathrm{JITTER}$)		> 3			> 3			>3		GHz
$\begin{aligned} & \text { tpLH, } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Output Differential	170	240	310	200	260	340	230	300	370	ps
tskew	Duty Cycle Skew (Note 15)		5.0	20		5.0	20		5.0	20	ps
	Within Device Skew \quad Q, $\overline{\text { Q }}$ Device to Device Skew (Note 15)			$\begin{gathered} \hline 80 \\ 140 \end{gathered}$			$\begin{gathered} \hline 80 \\ 140 \end{gathered}$			$\begin{gathered} 80 \\ 140 \end{gathered}$	
$\mathrm{t}_{\text {IITTER }}$	Cycle-to-Cycle Jitter (See Figure $2 \mathrm{~F}_{\text {max }} /$ IITTER)		0.2	< 1		0.2	<1		0.2	<1	ps
V_{PP}	Input Voltage Swing (Differential Configuration)	150	800	1200	150	800	1200	150	800	1200	mV
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise/Fall Times $(20 \%-80 \%)$$\quad$ Q, \bar{Q}	70	120	170	80	130	180	100	150	230	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
15. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

Figure 2. $\mathrm{F}_{\text {max }} / \mathrm{Jitt}$ r

MC10EP90, MC100EP90

Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC10EP90DTG	$\begin{aligned} & \text { TSSOP-20 } \\ & \text { (Pb-Free) } \end{aligned}$	75 Units / Rail
MC10EP90DTR2G		2500 / Tape \& Rail
MC100EP90DTG		75 Units / Rail
MC100EP90DTR2G		2500 / Tape \& Rail

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS $^{\text {mN }}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Translation - Voltage Levels category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLSX4373DMR2G NLSX5012MUTAG NLSX0102FCT2G NLSX4302EBMUTCG PCA9306FMUTAG MC100EPT622MNG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG NLSV4T3144MUTAG NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T NLSX3013BFCT1G NLV7WBD3125USG NLSX3012DMR2G 74AVCH1T45FZ4-7 NLVSV1T244MUTBG 74AVC1T45GS-Q100H CLVC16T245MDGGREP MC10H124FNG CAVCB164245MDGGREP CD40109BPWR MC10H350FNG MC10H125FNG MC100EPT21MNR4G MC100EP91DWG NLSX3018MUTAG NLSV2T244MUTAG NLSX3013FCT1G NLSX5011AMX1TCG PCA9306USG SN74GTL1655DGGR SN74AVCA406LZQSR NLSX4014DTR2G NLSX3018DTR2G LTC1045CSW\#PBF LTC1045CN\#PBF SY100EL92ZG 74AXP1T34GMH 74AXP1T34GNH LSF0204DPWR PI4ULS3V204LE ADG3245BRUZ-REEL7 ADG3123BRUZ ADG3245BRUZ ADG3246BCPZ ADG3308BCPZ-REEL ADG3233BRJZ-REEL7 ADG3233BRMZ

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

