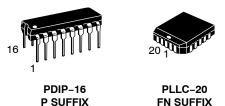
8-Line Multiplexer

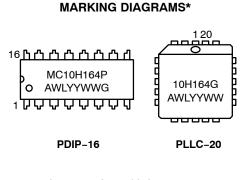
Description

The MC10H164 is a MECL $10H^{\text{TM}}$ part which is a functional/pinout duplication of the standard MECL $10K^{\text{TM}}$ family part, with 100% improvement in propagation delay, and no increase in power supply current.

The MC10H164 is designed to be used in data multiplexing and parallel to serial conversion applications. Full parallel gating provides equal delays through any data path. The MC10H164 incorporates an output buffer, eight inputs and an enable. A high on the enable forces the output low. The open emitter output allows the MC10H164 to be connected directly to a data bus. The enable line allows an easy means of expanding to more than 8 lines using additional MC10H164's.


Features

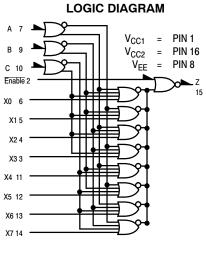
- Propagation Delay, 1.0 ns Typical
- Power Dissipation, 310 mW Typical (same as MECL 10K)
- Improved Noise Margin 150 mV (Over Operating Voltage and Temperature Range)
- Voltage Compensated
- MECL 10K-Compatible
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

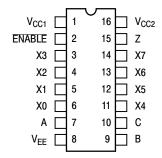
CASE 648-08

FN SUFFIX CASE 775-02


A= Assembly LocationWL, L= Wafer LotYY, Y= YearWW, W= Work WeekG= Pb-Free Package

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION


Device	Package	Shipping†
MC10H164FNG	PLLC-20 (Pb-Free)	46 Units / Tube
MC10H164FNR2G	PLLC-20 (Pb-Free)	500 Tape & Reel
MC10H164PG	PDIP-16 (Pb-Free)	25 Units / Tube

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

TRUTH TABLE						
	AD	ADDRESS INPUTS				
ENABLE	С	В	А	Z		
		L L H H		X0 X1 X2 X3		
	ннн			X4 X5 X6 X7		
Н	X	X	X	Ĺ		

DIP PIN ASSIGNMENT

Pin assignment is for Dual-in-Line Package. For PLCC pin assignment, see the Pin Conversion Tables on page 18 of the ON Semiconductor MECL Data Book (DL122/D).

Table 1. MAXIMUM RATINGS

Symbol	Characteristic	Rating	Unit
V _{EE}	Power Supply (V _{CC} = 0)	-8.0 to 0	Vdc
VI	Input Voltage (V _{CC} = 0)	0 to V _{EE}	Vdc
l _{out}	Output Current – Continuous – Surge	50 100	mA
T _A	Operating Temperature Range	0 to +75	°C
T _{stg}	Storage Temperature Range – Plastic – Ceramic	–55 to +150 −55 to +165	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

		C	0	2	5 °	7	75°	
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
Ι _Ε	Power Supply Current	-	83	-	75	-	83	mA
I _{inH}	Input Current High	-	512	-	320	-	320	μA
I _{inL}	Input Current Low	0.7	-	0.7	-	0.7	-	μA
V _{OH}	High Output Voltage	-1.02	-0.84	-0.98	-0.81	-0.92	-0.735	Vdc
V _{OL}	Low Output Voltage	-1.95	-1.63	-1.95	-1.63	-1.95	-1.60	Vdc
VIH	High Input Voltage	-1.17	-0.84	-1.13	-0.81	-1.07	-0.735	Vdc
VIL	Low Input Voltage	-1.95	-1.48	-1.95	-1.48	-1.95	-1.45	Vdc

Table 2. ELECTRICAL CHARACTERISTICS ($V_{EE} = -5.2 \text{ V} \pm 5\%$) (Note 1)

 Each MECL 10H series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V.

Table 3. AC PARAMETERS

		C	°	2	5°	7	75°	
Symbol	Characteristic	Min	Max	Min	Max	Min	Max	Unit
t _{pd}	Propagation Delay Enable Data Address	0.4 0.7 1.0	1.45 2.4 2.8	0.4 0.8 1.1	1.5 2.5 2.9	0.5 0.9 1.2	1.7 2.6 3.2	ns
t _r	Rise Time	0.5	1.5	0.5	1.6	0.5	1.7	ns
t _f	Fall Time	0.5	1.5	0.5	1.6	0.5	1.7	ns

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

TYPICAL APPLICATIONS

FIGURE 1 - HIGH SPEED 16-BIT MULTIPLEXER/DEMULTIPLEXER

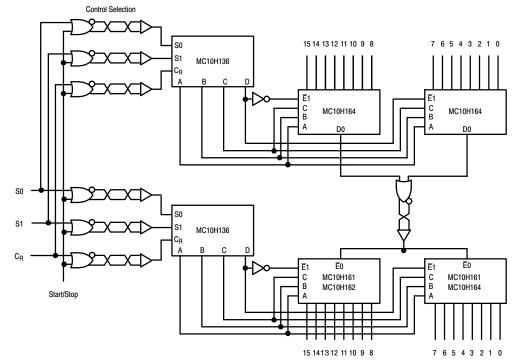
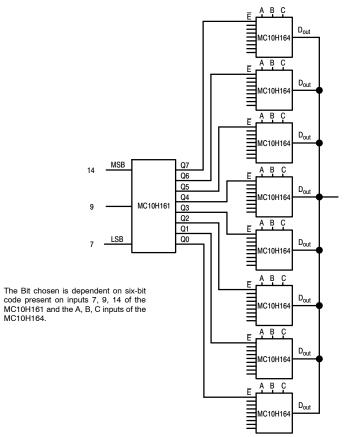
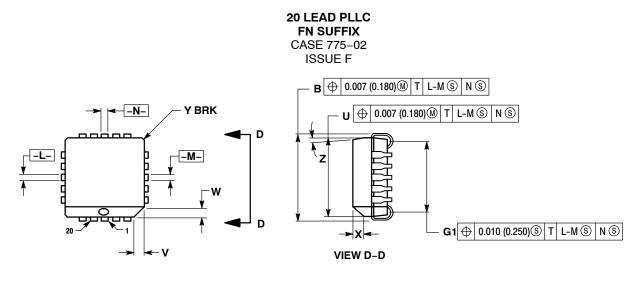
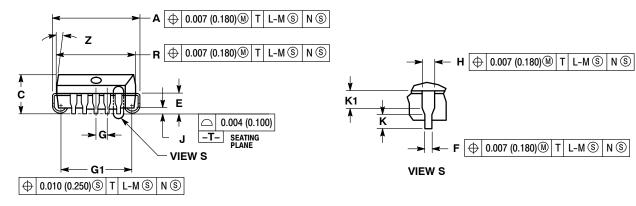
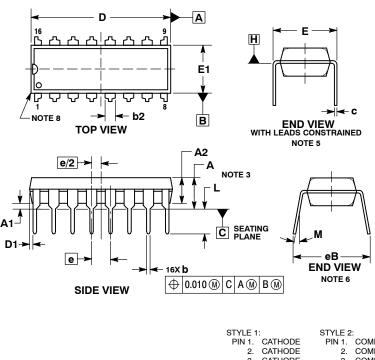





FIGURE 2 – 1-OF-64 LINE MULTIPLEXER

PACKAGE DIMENSIONS

NOTES


- 1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M, 1982
- DIMENSIONS IN INCHES.
 DATUMS -L-, -M-, AND -N- DETERMINED WHERE TOP OF LEAD SHOULDER EXITS PLASTIC BODY AT MOLD DETERMINE UNIT PARTING LINE.

- PARTING LINE.
 DIMENSION G1, TRUE POSITION TO BE MEASURED AT DATUM -T-, SEATING PLANE.
 DIMENSIONS R AND U DO NOT INCLUDE MOLD FLASH. ALLOWABLE MOLD FLASH IS 0.010 (0.250) PER SIDE.
 DIMENSIONS IN THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM BY UP TO 0.012 (0.300). DIMENSIONS R AND U ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTERLEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY. 7. DIMENSION H DOES NOT INCLUDE DAMBAR
- DIMENSION OR INTRUSION. THE DAMBAR PROTRUSION OR INTRUSION. THE DAMBAR PROTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE GREATER THAN 0.037 (0.940). THE DAMBAR INTRUSION(S) SHALL NOT CAUSE THE H DIMENSION TO BE SMALLER THAN 0.025 (0.635).

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.385	0.395	9.78	10.03
В	0.385	0.395	9.78	10.03
С	0.165	0.180	4.20	4.57
E	0.090	0.110	2.29	2.79
F	0.013	0.021	0.33	0.53
G	0.050	BSC	1.27	BSC
Н	0.026	0.032	0.66	0.81
J	0.020		0.51	
к	0.025		0.64	
R	0.350	0.356	8.89	9.04
U	0.350	0.356	8.89	9.04
v	0.042	0.048	1.07	1.21
W	0.042	0.048	1.07	1.21
Х	0.042	0.056	1.07	1.42
Y		0.020		0.50
Ζ	2 °	10 °	2 °	10 °
G1	0.310	0.330	7.88	8.38
K1	0.040		1.02	

PACKAGE DIMENSIONS

PDIP-16 **P SUFFIX** CASE 648-08 **ISSUE V**

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M. 1994. CONTROLLING DIMENSION: INCHES
- 3
- DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH 4 OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
- NOT TO EXCEED 0.10 INCH. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM 5 PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
- DIMENSION B IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED. 6 7
- DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE 8 CORNERS)

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α		0.210		5.33
A1	0.015		0.38	
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060) TYP	1.52	TYP
С	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005		0.13	
Е	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.100 BSC		2.54	BSC
eВ		0.430		10.92
L	0.115	0.150	2.92	3.81
Μ		10°		10°

STYLE 1	:	STYLE 2	:
PIN 1.	CATHODE	PIN 1.	COMMON DRAIN
2.	CATHODE	2.	COMMON DRAIN
3.	CATHODE	3.	COMMON DRAIN
4.	CATHODE	4.	COMMON DRAIN
5.	CATHODE	5.	COMMON DRAIN
6.	CATHODE	6.	COMMON DRAIN
7.	CATHODE	7.	COMMON DRAIN
8.	CATHODE	8.	COMMON DRAIN
9.	ANODE	9.	GATE
10.	ANODE	10.	SOURCE
11.	ANODE	11.	GATE
12.	ANODE	12.	SOURCE
13.	ANODE	13.	GATE
14.	ANODE	14.	SOURCE
15.	ANODE	15.	GATE
16.	ANODE	16.	SOURCE

MECL is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and mare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

M38510/01406BEA MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G NLVHC4851ADTR2G NLVHCT4851ADTR2G PI3B33X257BE M74HCT4052ADTR2G TC74AC138P(F) MC74LVX4051MNTWG NLV14051BDR2G NLV74HC238ADTR2G 715428X COMX-CAR-210 5962-8607001EA MAX3783UCM+D PI5C3253QEX 8CA3052APGGI8 TC74HC4051AF(EL,F) TC74VHC138F(EL,K,F PI3B3251LE PI5C3251QEX PI3B3251QE 74VHC4052AFT(BJ) PI3PCIE3415AZHEX NLV74HC4851AMNTWG MC74LVX257DG M74HC151YRM13TR M74HC151YTTR PI5USB31213XEAEX M74HCT4851ADWR2G XD74LS154 AP4373AW5-7-01 Q83VH251QG8 Q84A201QG HCS500-I/SM MC74HC151ADTG TC4066BP(N,F) 74ACT11139PWR 74VHC238FT(BJ) 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/36001BEA JM38510/30702BEA PI3USB302-AZBEX PI5C3257LE