MC14028B

BCD-To-Decimal Decoder Binary-To-Octal Decoder

The MC14028B decoder is constructed so that an 8421 BCD code on the four inputs provides a decimal (one–of–ten) decoded output, while a 3-bit binary input provides a decoded octal (one–of–eight) code output with D forced to a logic "0". Expanded decoding such as binary–to–hexadecimal (one–of–sixteen), etc., can be achieved by using other MC14028B devices. The part is useful for code conversion, address decoding, memory selection control, demultiplexing, or readout decoding.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Positive Logic Design
- Low Outputs on All Illegal Input Combinations
- Similar to CD4028B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to VSS)

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	V _{in} , V _{out}	-0.5 to V _{DD} + 0.5	V
Input or Output Current (DC or Transient) per Pin	I _{in} , I _{out}	±10	mA
Power Dissipation per Package (Note 1)	P _D	500	mW
Ambient Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Lead Temperature (8–Second Soldering)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

SOIC-16 D SUFFIX CASE 751B

PIN ASSIGNMENT

Q4 [1 ●	16	
Q2 [2	15] Q3
Q0 [3	14] Q1
Q7 [4	13] в
Q9 [5	12] C
Q5 [6	11] D
Q6 [7	10] A
v _{ss} [8	9	Q8

MARKING DIAGRAM

A = Assembly Location

WL = Wafer Lot
 YY, Y = Year
 WW = Work Week
 G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MC14028B

BLOCK DIAGRAM Q0 **o** 3 Q1 **o** 14 3-BIT Q2 **O** 2 **BINARY** OCTAL Q3 13 O-8421 DECODED **INPUTS** DECIMAL Q4 BCD OUTPUTS DECODED Q5 **INPUTS** OUTPUTS Q6 Q7 Q8 **-0** 9 Q9

 $V_{DD} = PIN 16$ $V_{SS} = PIN 8$

TRUTH TABLE

D	С	В	Α	Q9	Q8	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	1	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0	0	0	0
0	1	1	1	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14028BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14028BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14028BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

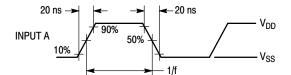
^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

MC14028B

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			-5	5°C		25°C		125	°C	
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" Lev V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD} "1" Lev	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	1 1 1	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" Lev (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
"1" Lev $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	1 1 1	3.5 7.0 11	- - -	Vdc
	e I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	1 1 1	-1.7 -0.36 -0.9 -2.4		mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ Sir $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	l _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	1 1 1	0.36 0.9 2.4	- - -	mAdc
Input Current	l _{in}	15	_	±0.1	_	±0.00001	±0.1	_	±1.0	μAdc
Input Capacitance (V _{in} = 0)	C _{in}	-	_	-	_	5.0	7.5	_	-	pF
Quiescent Current (Per Package)	I _{DD}	5.0 10 15		5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	I _T	5.0 10 15			$I_T = ($	0.3 μΑ/kHz) 0.6 μΑ/kHz) 0.9 μΑ/kHz)	f + I _{DD}			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


- 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
- The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 5) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH},t_{THL}=(1.5\;\text{ns/pF})\;C_L+25\;\text{ns}\\t_{TLH},t_{THL}=(0.75\;\text{ns/pF})\;C_L+12.5\;\text{ns}\\t_{TLH},t_{THL}=(0.55\;\text{ns/pF})\;C_L+9.5\;\text{ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_{L} + 215 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_{L} + 97 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_{L} + 65 \text{ ns}$	t _{РLН} , t _{РНL}	5.0 10 15	- - -	300 130 90	600 260 180	ns

- 5. The formulas given are for the typical characteristics only at 25°C.
- 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Inputs B, C, and D switching in respect to a BCD code.

All outputs connected to respective C_L loads. f in respect to a system clock.

Inputs A, B, and D low.

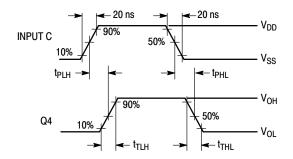
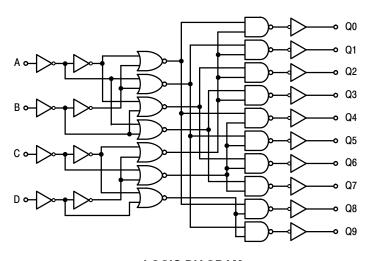



Figure 1. Dynamic Signal Waveforms

LOGIC DIAGRAM

APPLICATIONS INFORMATION

Expanded decoding can be performed by using the MC14028B and other CMOS Integrated Circuits. The circuit in Figure 2 converts any 4-bit code to a decimal or hexadecimal code. The accompanying table shows the input binary combinations, the associated "output numbers" that go "high" when selected, and the "redefined output numbers" needed for the proper code. For example: For the combination DCBA = 0111 the output number 7 is redefined for the 4-bit binary, 4-bit gray, excess-3, or excess-3 gray codes as 7, 5, 4, or 2, respectively. Figure 3 shows a 6-bit binary 1-of-64 decoder using nine MC14028B circuits and two MC14069UB inverters.

The MC14028B can be used in decimal digit displays, such as, neon readouts or incandescent projection indicators as shown in Figure 4.

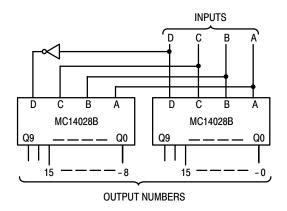


Figure 2. Code Conversion Circuit and Truth Table

																							Rede lumb		
																Hex	adeci	mal	D	ecima	al				
	Inp	uts								Out	put N	lumb	ers							٠ ١	t /	5–3	s-3 /	n	
D	С	В	Α	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	4-Bit Binary	4-Bit Gray	Excess-	Excess–3 Gray	Aiken	4221
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0			0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1			1	1
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	2	3	_	0	2	2
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	3	2	0	3	3	
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	4	7	1	4	4	
0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	5	6	2			3
0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	6 7	4	3	1		4
0	1	1	-	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		5	4	2		
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	8	15	5			_
1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	9	14	6			5
1	0	1	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0	0	0	10 11	12 13	7 8	9	5	6
	Ľ.							'	_		_	_			_	_			_			_	_	_	
1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	12	8	9	5	6	_
1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	13	9		6	7	7
1	1 1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14 15	11		8 7	8	8
1	T	T	1	1	U	0	0	0	0	U	0	0	0	0	0	0	0	0	0	15	10		/	9	9

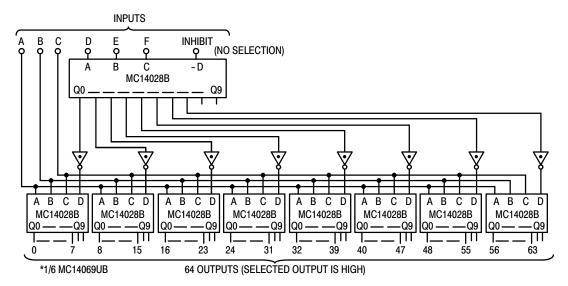


Figure 3. Six-Bit Binary 1-of-64 Decoder

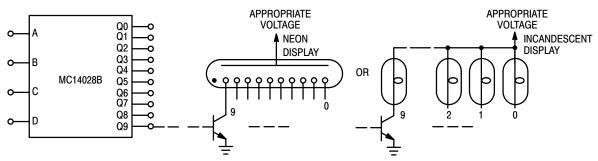
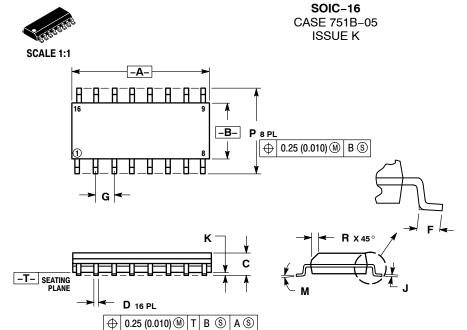



Figure 4. Decimal Digit Display Application

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INCHES				
DIM	MIN	MAX	MIN	MAX			
Α	9.80	10.00	0.386	0.393			
В	3.80	4.00	0.150	0.157			
C	1.35	1.75	0.054	0.068			
D	0.35	0.49	0.014	0.019			
F	0.40	1.25	0.016	0.049			
G	1.27	BSC	0.050 BSC				
7	0.19	0.25	0.008	0.009			
K	0.10	0.25	0.004	0.009			
M	0°	7°	0°	7°			
Р	5.80	6.20	0.229	0.244			
R	0.25	0.50	0.010	0.019			

STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR EMITTER COLLECTOR COLLECTOR COLLECTOR	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION	STYLE 3: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #3 BASE, #3 EMITTER, #3	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.	COLLECTOR, DYE COLLECTOR, #1 COLLECTOR, #2 COLLECTOR, #3 COLLECTOR, #3 COLLECTOR, #4 COLLECTOR, #4 EMITTER, #4 BASE, #3 EMITTER, #3 BASE, #2 EMITTER, #2 BASE, #1 EMITTER, #1	SOLDERING FOOTPRINT SX 6.40 SOLDERING FOOTPRINT	
STYLE 5: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	DRAIN, DYE #1 DRAIN, #1 DRAIN, #2 DRAIN, #2 DRAIN, #3 DRAIN, #3 DRAIN, #3 DRAIN, #4 GATE, #4 SOURCE, #4 GATE, #2 SOURCE, #3 GATE, #2 SOURCE, #1 SOURCE, #1	3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE CATHODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE ANODE	STYLE 7: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	SOURCE N-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT SOURCE P-CH SOURCE P-CH COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT GATE N-CH COMMON DRAIN (OUTPUT SOURCE N-CH		16 0.£	16X 1.12	- 1.27 PITCH

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1				

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE
NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG
M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)
74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ)
NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8
SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652