ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

14-Bit Binary Counter and Oscillator

The MC14060B is a 14–stage binary ripple counter with an on–chip oscillator buffer. The oscillator configuration allows design of either RC or crystal oscillator circuits. Also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. A negative transition on Clock will advance the counter to the next state. Schmitt trigger action on the input line permits very slow input rise and fall times. Applications include time delay circuits, counter controls, and frequency dividing circuits.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Features

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from Stages 4 Through 10 and 12 Through 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4060B
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

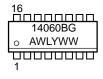
	, 0	•	
Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} +0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8 Second Soldering)	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C from 65°C To 125°C.

ON Semiconductor®

http://onsemi.com


SOIC-16 D SUFFIX CASE 751B SOEIAJ-16 F SUFFIX CASE 966

TSSOP-16 DT SUFFIX CASE 948F

PIN ASSIGNMENT

Q12 [1 ●	16	þ	V_{DD}
Q13 [2	15	þ	Q10
Q14 [3	14	þ	Q8
Q6 [4	13	þ	Q9
Q5 [5	12	þ	RESET
Q7 [6	11	þ	CLOCK
Q4 [7	10	þ	OUT 1
V _{SS} [8	9	þ	OUT 2

MARKING DIAGRAMS

SOIC-16

SOEIAJ-16

TSSOP-16

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Table 1. Truth Table

Clock	Reset	Output State
エイト	LLΗ	No Change Advance to Next State All Outputs are Low

X = Don't Care

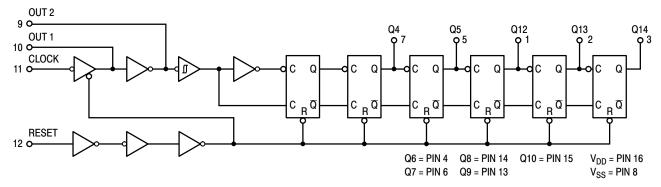


Figure 1. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14060BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14060BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14060BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14060BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14060BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14060BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
MC14060BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			-5	5°C		25°C		125	5°C	
Symbol	Characteristic	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
V _{OL}	Output Voltage "0" Level $V_{in} = V_{DD}$ or 0	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
V _{OH}	$V_{in} = 0$ or V_{DD} "1" Level	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	V
V _{IL}	Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5 \text{ V})$ $(V_O = 9.0 \text{ or } 1.0 \text{ V})$ $(V_O = 13.5 \text{ or } 1.5 \text{ V})$	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
V _{IH}	$(V_O = 0.5 \text{ or } 4.5 \text{ V})$ "1" Level $(V_O = 1.0 \text{ or } 9.0 \text{ V})$ $(V_O = 1.5 \text{ or } 13.5 \text{ V})$	5.0 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.50 8.25	- - -	3.5 7.0 11.0	- - -	V
V _{IL}		5.0 10 15	- - -	1.0 2.0 2.5	_ _ _	2.25 4.50 6.75	1.0 2.0 2.5	- - -	1.0 2.0 2.5	Vdc
V _{IH}	$(V_O = 0.5 \text{ Vdc})$ "1" Level $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	5.0 10 15	4.0 8.0 12.5	- - -	4.0 8.0 12.5	2.75 5.50 8.25	- - -	4.0 8.0 12.5	- - -	Vdc
I _{OH}	Output Drive Current (V _{OH} = 2.5 V) (Except Source (V _{OH} = 4.6 V) Pins 9 and 10) (V _{OH} = 9.5 V) (V _{OH} = 13.5 V)	5.0 5.0 10 15	-3.0 -0.64 -1.6 - 4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - - -	- 1.7 - 0.36 - 0.9 - 2.4	- - - -	mA
I _{OL}	$(V_{OL} = 0.4 \text{ V})$ Sink $(V_{OL} = 0.5 \text{ V})$ $(V_{OL} = 1.5 \text{ V})$	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mA
l _{in}	Input Current	15	_	±0.1	-	±0.00001	±0.1	_	±1.0	μΑ
C _{in}	Input Capacitance (V _{in} = 0)	-	-	-	-	5.0	7.5	_	-	pF
I _{DD}	Quiescent Current (Per Package)	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μΑ
lτ	Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	5.0 10 15			$I_{T} = (0$.25 μA/kHz) .54 μA/kHz) .85 μA/kHz)	f + I _{DD}			μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

3. The formulas given are for the typical characteristics only at 25°C.

4. To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.002.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Symbol	Characteristic	V _{DD} Vdc	Min	Typ (Note 5)	Max	Unit
t _{TLH}	Output Rise Time (Counter Outputs)	5.0 10 15	- - -	40 25 20	200 100 80	ns
t _{THL}	Output Fall Time (Counter Outputs)	5.0 10 15	- - -	50 30 20	200 100 80	ns
t _{PLH} t _{PHL}	Propagation Delay Time Clock to Q4	5.0 10 15	- - -	415 175 125	740 300 200	ns
	Clock to Q14	5.0 10 15	- - -	1.5 0.7 0.4	2.7 1.3 1.0	μs
t _{wH}	Clock Pulse Width	5.0 10 15	100 40 30	65 30 20	- - -	ns
f_{Φ}	Clock Pulse Frequency	5.0 10 15	- - -	5 14 17	3.5 8 12	MHz
t _{TLH} t _{THL}	Clock Rise and Fall Time	5.0 10 15		No Limit		ns
t _w	Reset Pulse Width	5.0 10 15	120 60 40	40 15 10	_ _ _	ns
t _{PHL}	Propagation Delay Time Reset to On	5.0 10 15	- - -	170 80 60	350 160 100	ns

^{5.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

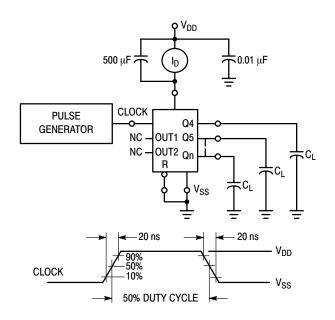


Figure 1. Power Dissipation Test Circuit and Waveform

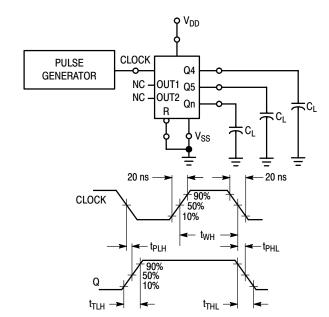
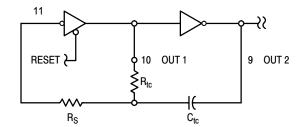



Figure 2. Switching Time Test Circuit and Waveforms

$$f \approx \frac{1}{2.3 \, R_{tc} C_{tc}}$$
if 1 kHz \leq f \leq 100 kHz
and 2R_{tc} $<$ R_S $<$ 10R_{tc}

(f in Hz, R in ohms, C in farads)

The formula may vary for other frequencies. Recommended maximum value for the resistors in 1 $M\Omega.$

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

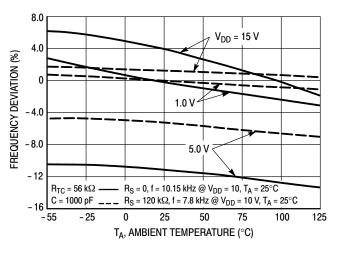


Figure 4. RC Oscillator Stability

 $V_{DD} = 10 V$ 50 f, OSCILLATOR FREQUENCY (kHz) f AS A FUNCTION 20 OF R_{TC} (C = 1000 pF)10 $\left(R_S\approx 2R_{TC}\right)$ 5 f AS A FUNCTION 2 OF C $(R_{TC} = 56 \text{ k}\Omega)$ $(R_S = 120 \text{ k})$ 0.5 0.2 1.0 k 10 k 100 k 1.0 M R_{TC}, RESISTANCE (OHMS) 0.0001 0.01 0.1 C, CAPACITANCE (µF)

Figure 5. RC Oscillator Frequency as a Function of R_{TC} and C

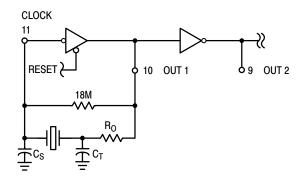
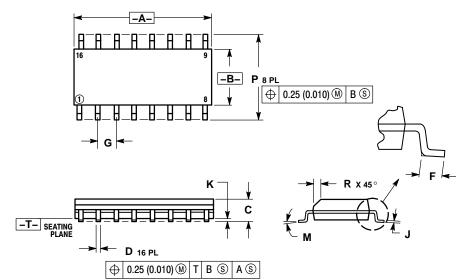


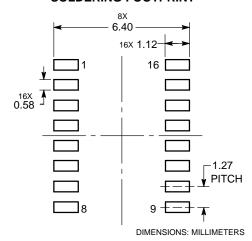
Figure 6. Typical Crystal Oscillator Circuit


Table 2. Typical Data for Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	32 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R _S	500 1.0	32 6.2	kHz kΩ
External Resistor/Capacitor Values RO CT CS	47 82 20	750 82 20	kΩ pF pF
Frequency Stability Frequency Changes as a Function of V _{DD} (T _A = 25°C) V _{DD} Change from 5.0 V to 10 V V _{DD} Change from 10 V to 15 V Frequency Change as a Function of Temperature (V _{DD} = 10 V) T _A Change from - 55°C to +25°C Complete Oscillator (Note 6) T _A Change from + 25°C to +125°C Complete Oscillator (Note 6) (Note 6)	+6.0 +2.0 +100 -160	+2.0 +2.0 +120 -560	ppm ppm

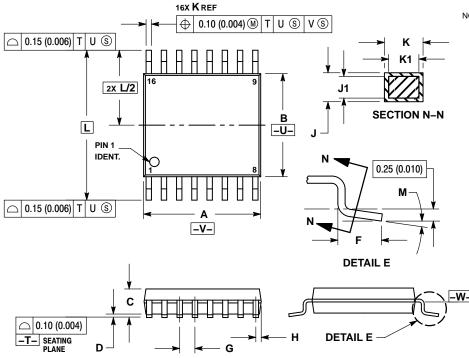
^{6.} Complete oscillator includes crystal, capacitors, and resistors.

PACKAGE DIMENSIONS


SOIC-16 **D SUFFIX** CASE 751B-05 ISSUE K

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

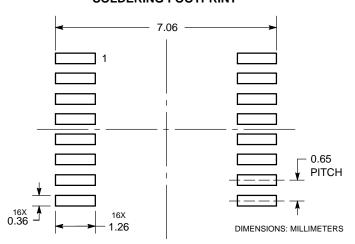

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-16 **DT SUFFIX** CASE 948F **ISSUE B**

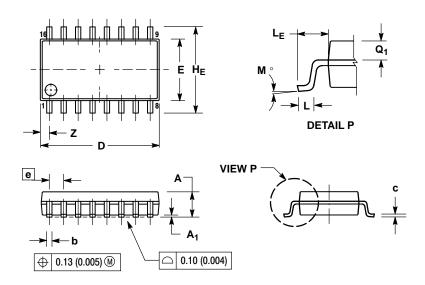
- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCED A 15 (
 - INCLUPTUSM ON GATE BORNS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
 - NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE –W–.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026 BSC	
Н	0.18	0.28	0.007	0.011
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
Κ	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
Г	6.40 BSC		0.252	BSC
М	0°	8°	0°	8 °


SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOEIAJ-16 F SUFFIX CASE 966 ISSUE A

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- 2. OWN HOLLING DIMENSION. WILLING LIED.
 3. DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- REFERENCE UNLT.

 S. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	-	2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Ε	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10 °	0 °	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and the unare registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product products are not application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if suc

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Counter Shift Registers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D,118 TPIC6C595PWG4 74VHC164MTCX MIC5891BN CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11 74HC164T14-13 STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653 74VHC4020FT(BJ) 74HC194D,653 74HCT164DB.118 74HCT4094D.112 74LV164DB.112 74LVC594AD.112 HEF4094BT.653 74VHC164FT(BE) 74HCT594DB.112 74HCT597DB.112 74LV164D.112 74LV165D.112 74LV4094D.112 74LV4094PW.112 CD74HC165M 74AHC594T16-13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13