MC14517B

Dual 64-Bit Static Shift Register

The MC14517B dual 64-bit static shift register consists of two identical, independent, 64-bit registers. Each register has separate clock and write enable inputs, as well as outputs at bits $16,32,48$, and 64 . Data at the data input is entered by clocking, regardless of the state of the write enable input. An output is disabled (open circuited) when the write enable input is high. During this time, data appearing at the data input as well as the 16 -bit, 32 -bit, and 48 -bit taps may be entered into the device by application of a clock pulse. This feature permits the register to be loaded with 64 bits in 16 clock periods, and also permits bus logic to be used. This device is useful in time delay circuits, temporary memory storage circuits, and other serial shift register applications.

Features

- Diode Protection on All Inputs
- Fully Static Operation
- Output Transitions Occur on the Rising Edge of the Clock Pulse
- Exceedingly Slow Input Transition Rates May Be Applied to the Clock Input
- 3-State Output at 64th-Bit Allows Use in Bus Logic Applications
- Shift Registers of any Length may be Fully Loaded with 16 Clock Pulses
- Supply Voltage Range $=3.0 \mathrm{Vdc}$ to 18 Vdc
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- This Device is $\mathrm{Pb}-$ Free and is RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage Range	V_{DD}	-0.5 to +18.0	V
Input or Output Voltage Range (DC or Transient)	$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	-0.5 to V_{DD} +0.5	V
Input or Output Current (DC or Transient) per Pin	$\mathrm{I}_{\text {in }}, \mathrm{I}_{\mathrm{out}}$	± 10	mA
Power Dissipation per Package (Note 1)	P_{D}	500	mW
Operating Temperature Range	T_{A}	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Temperature (8-Second Soldering)	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: Plastic "D/DW" Package: $-7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ From $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{S S}$ or V_{DD}). Unused outputs must be left open.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SOIC-16 WB DW SUFFIX CASE 751G

MARKING DIAGRAM

14517B
AWLYYWWG
0

A = Assembly Location
WL, L = Wafer Lot
$\mathrm{YY}, \mathrm{Y}=\mathrm{Year}$
WW, W = Work Week
G = Pb-Free Package

PIN ASSIGNMENT

ORDERING INFORMATION

Device	Package	Shipping †
MC14517BDWG	SOIC-16 WB (Pb-Free)	47 Units/Rail
MC14517BDWR2G	SOIC-16 WB (Pb-Free)	$1000 /$ Tape \& Reel
NLV14517BDWR2G	SOIC-16 WB (Pb-Free)	$1000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

FUNCTIONAL TRUTH TABLE ($\mathrm{X}=$ Don't Care)

Clock	Write Enable	Data	16-Bit Tap	32-Bit Tap	48-Bit Tap	64-Bit Tap
0	0	X	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
0	1	X	High Impedance	High Impedance	High Impedance	High Impedance
1	0	X	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
1	1	X	High Impedance	High Impedance	High Impedance	High Impedance
Υ	0	Data entered into 1st Bit	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
Γ	1	Data entered into 1st Bit	Data at tap entered into 17-Bit	Data at tap entered into 33-Bit	Data at tap entered into 49-Bit	High Impedance
L	0	X	Content of 16-Bit Displayed	Content of 32-Bit Displayed	Content of 48-Bit Displayed	Content of 64-Bit Displayed
乙	1	X	High Impedance	High Impedance	High Impedance	High Impedance

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic	Symbol	$V_{D D}$ Vdc	$-55^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$125^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	$\begin{aligned} & \text { Typ } \\ & \text { (Note 2) } \end{aligned}$	Max	Min	Max	
Output Voltage $V_{\text {in }}=V_{D D} \text { or } 0$	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & \hline 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	Vdc
$V_{\text {in }}=0$ or $V_{D D}$	V_{OH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	Vdc
$\begin{aligned} & \text { Input Voltage "0" Level } \\ & \text { (} \left.\mathrm{V}_{\mathrm{O}}=4.5 \text { or } 0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=9.0 \text { or } 1.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=13.5 \text { or } 1.5 \mathrm{Vdc}\right) \\ & \text { " } 1 \mathrm{~V}_{\mathrm{O}}=0.5 \text { or } 4.5 \mathrm{Vdc} \text { " Level } \\ & \left(\mathrm{V}_{\mathrm{O}}=1.0 \text { or } 9.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{O}}=1.5 \text { or } 13.5 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\text {IL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 2.25 \\ & 4.50 \\ & 6.75 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	Vdc
	V_{IH}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 5.50 \\ & 8.25 \end{aligned}$	-	3.5 7.0 11	-	Vdc
Output Drive Current (VOH $=2.5 \mathrm{Vdc})$ Source $\left(\mathrm{VOH}_{\mathrm{OH}}=4.6 \mathrm{Vdc}\right)$ $\left(\mathrm{VOH}_{\mathrm{OH}}=9.5 \mathrm{Vdc}\right)$ $\left(\mathrm{V}_{\mathrm{OH}}=13.5 \mathrm{Vdc}\right)$	${ }^{1} \mathrm{OH}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -3.0 \\ -0.64 \\ -1.6 \\ -4.2 \\ \hline \end{gathered}$	- - -	$\begin{aligned} & -2.4 \\ & -0.51 \\ & -1.3 \\ & -3.4 \\ & \hline \end{aligned}$	$\begin{aligned} & -4.2 \\ & -0.88 \\ & -2.25 \\ & -8.8 \end{aligned}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \\ \hline \end{gathered}$	-	mAdc
$\begin{aligned} & \left(\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{Vdc}\right) \\ & \left(\mathrm{V}_{\mathrm{OL}}=1.5 \mathrm{Vdc}\right) \end{aligned}$	loL	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$	-	$\begin{gathered} 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} 0.88 \\ 2.25 \\ 8.8 \end{gathered}$	-	$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$	-	mAdc
Input Current	$\mathrm{l}_{\text {in }}$	15	-	± 0.1	-	± 0.00001	± 0.1	-	± 1.0	$\mu \mathrm{Adc}$
Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	$\mathrm{C}_{\text {in }}$	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package)	I_{DD}	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 0.005 \\ & 0.010 \\ & 0.015 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 20 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{Adc}$
Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ on all outputs, all buffers switching)	${ }_{\text {IT }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=(4.2 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(8.8 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \\ & \mathrm{I}_{\mathrm{T}}=(13.7 \mu \mathrm{~A} / \mathrm{kHz}) \mathrm{f}+\mathrm{I}_{\mathrm{DD}} \end{aligned}$							$\mu \mathrm{Adc}$
Three-State Leakage Current	$\mathrm{I}_{\text {TL }}$	15	-	± 0.1	-	± 0.0001	± 0.1	-	± 3.0	$\mu \mathrm{Adc}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
3. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
4. To calculate total supply current at loads other than 50 pF : $\mathrm{I}_{T}\left(\mathrm{C}_{\mathrm{L}}\right)=\mathrm{I}_{T}(50 \mathrm{pF})+\left(\mathrm{C}_{\mathrm{L}}-50\right)$ Vfk where: I_{T} is in $\mu \mathrm{A}$ (per package), C_{L} in pF , $V=\left(V_{D D}-V_{S S}\right)$ in volts, f in $k H z$ is input frequency, and $k=0.004$.

SWITCHING CHARACTERISTICS (Note 5) ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Symbol	V_{DD}	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Unit
Output Rise and Fall Time $\begin{aligned} & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(1.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+25 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.75 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+12.5 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}=(0.65 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+9.5 \mathrm{~ns} \end{aligned}$	${ }_{\text {t }}^{\text {TLH }}$, $\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 50 \\ & 40 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
Propagation Delay Time $\begin{aligned} & \mathrm{t}_{\text {PLH }}, \mathrm{tPHL}=(1.7 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+390 \mathrm{~ns} \\ & \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\text {PHL }}=(0.66 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+177 \mathrm{~ns} \\ & \mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}=(0.5 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}}+115 \mathrm{~ns} \end{aligned}$	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 475 \\ & 210 \\ & 140 \end{aligned}$	$\begin{aligned} & 770 \\ & 300 \\ & 215 \end{aligned}$	ns
Clock Pulse Width	twh	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 330 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 170 \\ & 75 \\ & 60 \end{aligned}$	-	ns
Clock Pulse Frequency	f_{cl}	5.0 10 15	-	$\begin{aligned} & 3.0 \\ & 6.7 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 4.0 \\ & 5.3 \end{aligned}$	MHz
Clock Pulse Rise and Fall Time	${ }_{\text {t }}^{\text {TLH }}$, $\mathrm{t}_{\text {THL }}$	5.0 10 15	See (Note 7)			-
Data to Clock Setup Time	$\mathrm{t}_{\text {su }}$	5.0 10 15	0 10 15	-40 -15 0	-	ns
Data to Clock Hold Time	$t_{\text {h }}$	$\begin{aligned} & \hline 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 150 \\ & 75 \\ & 35 \end{aligned}$	$\begin{aligned} & 75 \\ & 25 \\ & 10 \end{aligned}$	-	ns
Write Enable to Clock Setup Time	$\mathrm{t}_{\text {su }}$	5.0 10 15	$\begin{aligned} & 400 \\ & 200 \\ & 110 \end{aligned}$	$\begin{aligned} & \hline 170 \\ & 65 \\ & 50 \end{aligned}$	-	ns
Write Enable to Clock Release Time	trel	5.0 10 15	$\begin{aligned} & 380 \\ & 180 \\ & 100 \end{aligned}$	$\begin{aligned} & 160 \\ & 55 \\ & 40 \end{aligned}$	-	ns

5. The formulas given are for the typical characteristics only at $25^{\circ} \mathrm{C}$.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
7. When shift register sections are cascaded, the maximum rise and fall time of the clock input should be equal to or less than the rise and fall time of the data outputs, driving data inputs, plus the propagation delay of the output driving stage.

REPETITIVE WAVEFORM

Figure 1. Power Dissipation Test Circuit and Waveform

(Output being tested should be in the high-logic state)
Figure 2. Typical Output Source Current Characteristics Test Circuit

Figure 4. AC Test Waveforms

SCALE 1：1

16日月
$X X X X X X X X X X X$
$X X X X X X X X X X X$ AWLYYWWG
－
1 昭昭昭
XXXXX＝Specific Device Code
A＝Assembly Location
WL＝Wafer Lot
YY＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-$ Free indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．

SOIC－16 WB CASE 751G ISSUE E

DATE 08 OCT 2021

1．DIMENSIDNING AND TQLERANCING PER ASME Y14．5M， 1994.
2．CINTRDLLING DIMENSIDN：MILLIMETERS
3．DIMENSIDN b DEES NDT INCLUDE DAMBAR PROTRUSIDN． ALLIWABLE PROTRUSIDN SHALL BE 0.13 TOTAL IN EXCESS DF B DIMENSIIN AT MAXIMUM MATERIAL CUNDITIUN．
4．DIMENSIONS D AND E DD NOT INCLUDE MLLD PROTRUSIONS．
5．MAXIMUM MDLD PROTRUSION GR FLASH TD BE 0.15 PER SIDE．

DIM	MILLIMETERS	
	MIN．	MAX．
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	
BSC		
H	10.05	10.55
h	0.53	
LEF		
L	0.50	0.90
M	0°	

DETAIL A 2X SCALE

| DOCUMENT NUMBER： | 98ASB42567B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－16 WB | PAGE 1 OF 1 |

[^0]onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D,118
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11 74HC164T14-13
STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653 74VHC4020FT(BJ)
74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT.653 74VHC164FT(BE)
74HCT594DB. 112 74HCT597DB. 112 74LV164D. 112 74LV165D. 112 74LV4094D. 112 74LV4094PW. 112 CD74HC165M 74AHC594T16-
13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13 74HC594S16-13

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries，LLC dba onsemi or its subsidiaries in the United States and／or other countries．onsemi reserves the right to make changes without further notice to any products herein．onsemi makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does onsemi assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．onsemi does not convey any license under its patent rights nor the rights of others．

