MC33039，NCV33039

Closed Loop Brushless Motor Adapter

The MC33039 is a high performance closed－loop speed control adapter specifically designed for use in brushless DC motor control systems．Implementation will allow precise speed regulation without the need for a magnetic or optical tachometer．This device contains three input buffers each with hysteresis for noise immunity，three digital edge detectors，a programmable monostable，and an internal shunt regulator．Also included is an inverter output for use in systems that require conversion of sensor phasing．Although this device is primarily intended for use with the MC33035 brushless motor controller，it can be used cost effectively in many other closed－loop speed control applications．

Features

－Digital Detection of Each Input Transition for Improved Low Speed Motor Operation
－TTL Compatible Inputs With Hysteresis
－Operation Down to 5．5 V for Direct Powering from MC33035 Reference
－Internal Shunt Regulator Allows Operation from a Non－Regulated Voltage Source
－Inverter Output for Easy Conversion between $60^{\circ} / 300^{\circ}$ and $120^{\circ} / 240^{\circ}$ Sensor Phasing Conventions
－ $\mathrm{Pb}-$ Free Packages are Available

Representative Block Diagram

PIN CONNECTIONS

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet．

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
V_{CC} Zener Current	${ }^{\mathrm{Z}}$ (V $\left.\mathrm{V}_{\mathrm{CC}}\right)$	30	mA
Logic Input Current (Pins 1, 2, 3)	I_{H}	5.0	mA
Output Current (Pins 4, 5), Sink or Source	IDRV	20	mA
Power Dissipation and Thermal Characteristics Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air	$\begin{gathered} \mathrm{P}_{\mathrm{D}} \\ \mathrm{R}_{\theta \mathrm{BA}} \end{gathered}$	$\begin{aligned} & 650 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range MC33039 NCV33039	T_{A}	$\begin{aligned} & -40 \text { to }+85 \\ & -40 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=6.25 \mathrm{~V}, \mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=22 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
LOGIC INPUTS					
Input Threshold Voltage High State Low State Hysteresis	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{H}} \end{aligned}$	$\begin{gathered} 2.4 \\ - \\ 0.4 \end{gathered}$	$\begin{aligned} & 2.1 \\ & 1.4 \\ & 0.7 \end{aligned}$	$\begin{gathered} - \\ 1.0 \\ 0.9 \end{gathered}$	V
```Input Current High State (V V  \phiA фв, фС Low State (VIL = 0 V) \phiA фB, фC```	$\mathrm{I}_{\mathrm{IH}}$ $I_{I L}$	$\begin{gathered} -40 \\ - \\ -190 \end{gathered}$	$\begin{aligned} & -60 \\ & -0.3 \\ & \\ & -300 \\ & -0.3 \end{aligned}$	$\begin{aligned} & -80 \\ & -5.0 \\ & \\ & -380 \\ & -5.0 \end{aligned}$	$\mu \mathrm{A}$

## MONOSTABLE AND OUTPUT SECTIONS

Output Voltage	$\mathrm{V}_{\mathrm{OH}}$				V
High State					
$\mathrm{f}_{\text {out }}\left(l_{\text {source }}=5.0 \mathrm{~mA}\right)$		3.60	3.95	4.20	
$\phi_{\text {A }}^{\bar{A}}\left(l_{\text {source }}=2.0 \mathrm{~mA}\right)$		4.20	4.75	-	
Low State	$\mathrm{V}_{\text {OL }}$				
$\mathrm{f}_{\text {out }}\left(l_{\text {sink }}=10 \mathrm{~mA}\right)$		-	0.25	0.50	
$\phi_{\text {A }}^{\bar{A}}\left(\mathrm{l}_{\text {sink }}=10 \mathrm{~mA}\right)$		-	0.25	0.50	
Capacitor $\mathrm{C}_{\text {T }}$ Discharge Current	$I_{\text {dischg }}$	20	35	60	mA
Output Pulse Width (Pin 5)	tpW	205	225	245	$\mu \mathrm{S}$
POWER SUPPLY SECTION					
Power Supply Operating Voltage Range MC33039 ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$ )   NCV33039 ( $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$ )	$\mathrm{V}_{\mathrm{CC}}$	5.5	-	$\mathrm{V}_{\mathrm{z}}$	V
Power Supply Current	$\mathrm{I}_{\mathrm{Cc}}$	1.8	3.9	5.0	mA
Zener Voltage ( $\mathrm{Iz}=10 \mathrm{~mA}$ )	$\mathrm{V}_{\mathrm{Z}}$	7.5	8.25	9.0	V
Zener Dynamic Impedance ( $\Delta \mathrm{I}_{\mathrm{Z}}=10 \mathrm{~mA}$ to $20 \mathrm{~mA}, \mathrm{f} \leqslant 1.0 \mathrm{kHz}$ )	$\left\|z_{\text {ka }}\right\|$	-	2.0	5.0	$\Omega$



Figure 1. Typical Three Phase, Six Step Motor Application

## OPERATING DESCRIPTION

The MC33039 provides an economical method of implementing closed-loop speed control of brushless DC motors by eliminating the need for a magnetic or optical tachometer. Shown in the timing diagram of Figure 1, the three inputs (Pins 1, 2, 3) monitor the brushless motor rotor position sensors. Each sensor signal transition is digitally detected, OR'ed at the Latch 'Set' Input, and causes $\mathrm{C}_{\mathrm{T}}$ to discharge. A corresponding output pulse is generated at $f_{\text {out }}$ (Pin 5) of a defined amplitude, and programmable width determined by the values selected for $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$ (Pin 6). The average voltage of the output pulse train increases with motor speed. When fed through a low pass filter or integrator, a DC voltage proportional to speed is generated. Figure 2 shows the proper connections for a typical closed
loop application using the MC33035 brushless motor controller. Constant speed operation down to 100 RPM is possible with economical three phase four pole motors.

The $\phi_{\mathrm{A}}$ inverter output ( Pin 4 ) is used in systems where the controller and motor sensor phasing conventions are not compatible. A method of converting from either convention to the other is shown in Figure 3. For a more detailed explanation of this subject, refer to the text above Figure 39 on the MC33035 data sheet.

The output pulse amplitude $\mathrm{V}_{\mathrm{OH}}$ is constant with temperature and controlled by the supply voltage on $\mathrm{V}_{\mathrm{CC}}$ (Pin 8). Operation down to 5.5 V is guaranteed over temperature. For systems without a regulated power supply, an internal 8.25 V shunt regulator is provided.

MC33039, NCV33039


Figure 2. Typical Closed Loop Speed Control Application


Figure 3. $\mathrm{f}_{\text {out }}$, Pulse Width
versus Timing Resistor


Figure 5. $\mathrm{f}_{\text {out }}$, Pulse Width Change versus Supply Voltage


Figure 4. $f_{\text {out }}$, Pulse Width Change versus Temperature


Figure 6. Supply Current versus Supply Voltage


Figure 7. $f_{\text {out }}$, Saturation versus Load Current
$\mathrm{I}_{0}$, OUTut LOADCURAEN(ma)


Figure 8. $\mathrm{f}_{\text {out }}$, Saturation Change versus Temperature

## ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
MC33039D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC-8	98 Units / Rail
MC33039DG			
MC33039DR2			2500 / Tape \& Reel
MC33039DR2G			
MC33039P		PDIP-8	50 Units / Rail
MC33039PG			
NCV33039DR2*	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SOIC-8	2500 / Tape \& Reel
NCV33039DR2G*			

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV33039: $T_{\text {low }}=-40 C, T_{\text {high }}=+125 \mathrm{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

## SCALE 1:1



$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+I N \\
& \text { 3. DC }-I N \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
2. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE OR PROTRUSIONS. MOLD F
NOT TO EXCEED 0.10 INCH. NOT TO EXCEED 0.10 INCH.
4. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
5. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
6. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY
7. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	----	0.210	---	5.33
A1	0.015	----	0.38	---
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060	TYP	1.3	1.52 TYP
C	0.008	0.014	0.20	0.36
D	0.355	0.400	9.0	10.16
D1	0.005	----	0.13	---
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
e	0.100	BSC	2.54	BSC
eB	----	0.430	---	10.92
L	0.115	0.150	2.92	3.81
M	----	$10^{\circ}$	---	$10^{\circ}$

GENERIC MARKING DIAGRAM*


XXXX = Specific Device Code
A = Assembly Location
WL = Wafer Lot
YY = Year
WW = Work Week
$\mathrm{G} \quad=\mathrm{Pb}$-Free Package
*This information is generic. Please refer to device data sheet for actual part marking $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\cdot$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

[^0]


## SOLDERING FOOTPRINT＊



GENERIC
MARKING DIAGRAM＊
NOTES：
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006） PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．
6．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07．

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	${ }^{\circ}$	$8{ }^{\circ}$	0
	8	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244


8 月且且且	8 月且且且
XXXXXX	XXXXXX
AYWW	AYWW
\＃$\because 甘 甘$	1 \＃\＃\＃
Discrete	Discrete （Pb－Free）

XXXXX＝Specific Device Code
A＝Assembly Location
L＝Wafer Lot
＝Year WW Work
＝Work Week
$=$ Work Week $\quad$＝Pb－Free Package
$=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-\mathrm{Free}$ indicator，＂ G ＂or microdot＂ r ＂，may or may not be present．Some products may not follow the Generic Marking．
＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

## STYLES ON PAGE 2

| DOCUMENT NUMBER： | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository． <br> Printed versions are uncontrolled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－8 NB | PAGE 1 OF 2 |

[^1]STYLE 1:

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:

PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE

SOURCE
GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10U
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
CATHODE 2
CATHODE 3
CATHODE 4
CATHODE 5
COMMON ANODE
COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. $N / C$

REXT
GND
IOUT
IOUT
IOUT
IOUT
STYLE 29:
PIN 1. BASE, DIE \#1
EMITTER, \#1
BASE, \#2
EMITTER, \#2
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#1
COLLECTOR, \#1

STYLE 2:
PIN 1. COLIECTOR, DIE,
COLLECTOR, \#1
COLLECTOR, \#1
COLLECTOR, \#2
COLLECTOR, \#2
COLLECTOR, \#2
BASE, \#2
EMITTER, \#2
BASE, \#1
EMITTER, \#1
STYLE 6:
PIN 1. SOURCE
DRAIN
DRAIN
DRAIN
SOURCE
SOURCE
. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
BIAS 1 OUTPUT GROUND GROUND BIAS 2 7. INPUT 8. GROUND

STYLE 14:
PIN 1. N-SOURCE
N-GATE
P-SOURCE
P-GATE
P-DRAIN
P-DRAIN
. N-DRAIN
8. N-DRAIN

STYLE 18:
PIN 1. ANODE
2. ANODE

SOURCE
GATE
DRAIN
DRAIN
7. CATHODE
8. CATHODE

STYLE 22:
PIN 1. I/O LINE 1
COMMON CATHODE/VCC
COMMON CATHODE/VCC
I/O LINE 3
COMMON ANODE/GND
I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$

ENABLE
ILIMIT
SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
. GATE 1

STYLE 3
PIN

1. DRAIN, DIE \#1
2. DRAIN, \#1
3. DRAIN, \#2

DRAIN, \#2
5. GATE, \#2
6. SOURCE, \#2
7. GATE, \#1
8. SOURCE, \#

STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

## STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE
3. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

## STYLE 19:

PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

## STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

## STYLE 27:

PIN 1. ILIMIT
2. OVLO

UVLO
INPUT+
SOURCE
SOURCE
SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
7. ANODE
8. COMMON CATHODE

## STYLE 8

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

## STYLE 12:

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

## STYLE 16:

PIN 1. EMITTER, DIE \#
2. BASE, DIE \#1
3. EMITTER, DIE \#
3. EMITTER, DIE
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

## STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

## STYLE 24:

PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

## STYLE 28:

PIN 1. SW_TO_GND
2. DASIIC_OFF
3. DASIC_SW_DET
4. GND
5. V MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

[^2] rights of others.
onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Motor/Motion/Ignition Controllers \& Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
FSB50550TB2 FSBF15CH60BTH MSVCPM2-63-12 MSVGW45-14-2 MSVGW54-14-3 MSVGW54-14-5 NTE7043 LA6565VR-TLM-E LB11650-E LB1837M-TLM-E LB1845DAZ-XE LC898300XA-MH SS30-TE-L-E 26700 LV8281VR-TLM-H BA5839FP-E2 IRAM2361067A LA6584JA-AH LB11847L-E NCV70501DW002R2G AH293-PL-B STK672-630CN-E TND315S-TL-2H FNA23060 FSB50250AB FNA41060 MSVB54 MSVBTC50E MSVCPM3-54-12 MSVCPM3-63-12 MSVCPM4-63-12 MSVTA120 FSB50550AB NCV70501DW002G LC898301XA-MH LV8413GP-TE-L-E MSVGW45-14-3 MSVGW45-14-4 MSVGW45-14-5 MSVGW54-14-4 STK984-091A-E MP6519GQ-Z LB11651-E IRSM515-025DA4 LV8127T-TLM-H MC33812EKR2 NCP81382MNTXG TDA21801

LB11851FA-BH NCV70627DQ001R2G


[^0]:    ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]:    ON Semiconductor and（IN）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^2]:    ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

