Inverting Regulator - Buck, Boost, Switching

1.5 A

MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A

The MC34063A Series is a monolithic control circuit containing the primary functions required for $\mathrm{DC}-$ to-DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information.

Features

- Operation from 3.0 V to 40 V Input
- Low Standby Current
- Current Limiting
- Output Switch Current to 1.5 A
- Output Voltage Adjustable
- Frequency Operation to 100 kHz
- Precision 2% Reference
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

This device contains 79 active transistors.
Figure 1. Representative Schematic Diagram

See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet.

MC34063A, MC33063A, SC34063A, SC33063A, NCV33063A

Figure 2. Pin Connections

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	40	Vdc
Comparator Input Voltage Range	$\mathrm{V}_{\text {IR }}$	-0.3 to +40	Vdc
Switch Collector Voltage	$\mathrm{V}_{\text {C(switch) }}$	40	Vdc
Switch Emitter Voltage ($\mathrm{V}_{\text {Pin } 1}=40 \mathrm{~V}$)	$\mathrm{V}_{\mathrm{E} \text { (switch) }}$	40	Vdc
Switch Collector to Emitter Voltage	$\mathrm{V}_{\mathrm{CE} \text { (switch) }}$	40	Vdc
Driver Collector Voltage	$\mathrm{V}_{\mathrm{C} \text { (driver) }}$	40	Vdc
Driver Collector Current (Note 1)	$\mathrm{I}_{\mathrm{C} \text { (driver) }}$	100	mA
Switch Current	Isw	1.5	A
Power Dissipation and Thermal Characteristics			
Plastic Package, P, P1 Suffix			
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	W
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	115	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC Package, D Suffix			
$\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$	P_{D}	625	mW
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	160	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance	$\mathrm{R}_{\text {өJC }}$	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
DFN Package			
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	1.25	mW
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	$\mathrm{T}_{\text {A }}$		${ }^{\circ} \mathrm{C}$
MC34063A, SC34063A		0 to +70	
MC33063AV, NCV33063A		-40 to +125	
MC33063A, SC33063A		-40 to +85	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Maximum package power dissipation limits must be observed.
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL-STD-883, Method 3015. Machine Model Method 400 V .
3. NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$ [Note 4], unless otherwise specified.)

Characteristics	Symbol	Min	Typ	Max	Unit
OSCILLATOR					
Frequency ($\mathrm{V}_{\text {Pin } 5}=0 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{f}_{\text {osc }}$	24	33	42	kHz
Charge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {chg }}$	24	35	42	$\mu \mathrm{A}$
Discharge Current ($\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ to $\left.40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {dischg }}$	140	220	260	$\mu \mathrm{A}$
Discharge to Charge Current Ratio (Pin 7 to $\mathrm{V}_{\mathrm{CC}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	Idischg $/ /_{\text {chg }}$	5.2	6.5	7.5	-
Current Limit Sense Voltage ($\mathrm{I}_{\text {chg }}=I_{\text {dischg }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{V}_{\mathrm{ipk}}$ (sense)	250	300	350	mV

OUTPUT SWITCH (Note 5)

Saturation Voltage, Darlington Connection (Isw = 1.0 A, Pins 1, 8 connected)	$\mathrm{V}_{\text {CE(sat) }}$	-	1.0	1.3	V
Saturation Voltage (Note 6) $\left(\mathrm{I}_{\mathrm{SW}}=1.0 \mathrm{~A}, \mathrm{R}_{\operatorname{Pin} 8}=82 \Omega \text { to } \mathrm{V}_{\mathrm{CC}}, \text { Forced } \beta \simeq 20\right)$	$\mathrm{V}_{\text {CE(sat) }}$	-	0.45	0.7	V
DC Current Gain ($\mathrm{ISW}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\mathrm{h}_{\text {FE }}$	50	75	-	-
Collector Off-State Current ($\mathrm{V}_{\text {CE }}=40 \mathrm{~V}$)	$\mathrm{I}_{\text {(0ff) }}$	-	0.01	100	$\mu \mathrm{A}$

COMPARATOR

Threshold Voltage	$\mathrm{V}_{\text {th }}$				
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.225	1.25	1.275	V
$\mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$		1.21	-	1.29	
Threshold Voltage Line Regulation $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 40 V$)$	Reg $_{\text {line }}$				mV
MC33063, MC34063		-	1.4	5.0	
MC33063V, NCV33063		-	1.4	6.0	
Input Bias Current $\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right)$	I_{IB}	-	-20	-400	nA

TOTAL DEVICE

Supply Current $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right.$ to $40 \mathrm{~V}, \mathrm{C}_{\mathrm{T}}=1.0 \mathrm{nF}$, Pin $7=\mathrm{V}_{\mathrm{CC}}$, $V_{\text {Pin } 5}>V_{\text {th }}$, Pin $2=G N D$, remaining pins open)	${ }^{\text {ICC }}$	-	-	4.0	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for MC34063, SC34063; $-40^{\circ} \mathrm{C}$ for MC33063, SC33063, MC33063V, NCV33063
$\mathrm{T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for MC34063, SC34063; $+85^{\circ} \mathrm{C}$ for MC33063, SC33063; $+125^{\circ} \mathrm{C}$ for MC33063V, NCV33063
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
6. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ for it to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended:
Forced β of output switch : $\frac{\mathrm{IC} \text { output }}{I_{C} \text { driver }-7.0 \mathrm{~mA}^{*}} \geq 10$

* The 100Ω resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.

Figure 3. Oscillator Frequency

Figure 4. Timing Capacitor Waveform

Figure 5. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current

Figure 7. Current Limit Sense Voltage versus Temperature

Figure 6. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current

Figure 8. Standby Supply Current versus Supply Voltage

[^0]

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=8.0 \mathrm{~V}$ to $16 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	$30 \mathrm{mV}= \pm 0.05 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=75 \mathrm{~mA}$ to 175 mA	$10 \mathrm{mV}= \pm 0.017 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	400 mVpp
Efficiency	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	87.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=175 \mathrm{~mA}$	40 mVpp

Figure 9. Step-Up Converter

Figure 10. External Current Boost Connections for I_{C} Peak Greater than 1.5 A
9a. External NPN Switch
9b. External NPN Saturated Switch
(See Note 8)
8. If the output switch is driven into hard saturation (non-Darlington configuration) at low switch currents ($\leq 300 \mathrm{~mA}$) and high driver currents ($\geq 30 \mathrm{~mA}$), it may take up to $2.0 \mu \mathrm{~s}$ to come out of saturation. This condition will shorten the off time at frequencies $\geq 30 \mathrm{kHz}$, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non-Darlington configuration is used, the following output drive condition is recommended.

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=15 \mathrm{~V}$ to $25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	$12 \mathrm{mV}= \pm 0.12 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}$ to 500 mA	$3.0 \mathrm{mV}= \pm 0.03 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	120 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	1.1 A
Efficiency	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	83.7%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=25 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$	40 mVpp

Figure 11. Step-Down Converter

Figure 12. External Current Boost Connections for I_{C} Peak Greater than 1.5 A
11a. External NPN Switch
11b. External PNP Saturated Switch

Test	Conditions	Results
Line Regulation	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	$3.0 \mathrm{mV}= \pm 0.012 \%$
Load Regulation	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$ to 100 mA	$0.022 \mathrm{~V}= \pm 0.09 \%$
Output Ripple	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	500 mVpp
Short Circuit Current	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0.1 \Omega$	910 mA
Efficiency	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	62.2%
Output Ripple With Optional Filter	$\mathrm{V}_{\text {in }}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$	70 mVpp

Figure 13. Voltage Inverting Converter

Figure 14. External Current Boost Connections for I_{C} Peak Greater than 1.5 A

13a. External NPN Switch

13b. External PNP Saturated Switch

(Bottom Side)

(Top View, Component Side)
Figure 15. Printed Circuit Board and Component Layout
(Circuits of Figures 9, 11, 13)

INDUCTOR DATA

Converter	Inductance ($\mu \mathrm{H})$	Turns/Wire
Step-Up	170	38 Turns of \#22 AWG
Step-Down	220	48 Turns of \#22 AWG
Voltage-Inverting	88	28 Turns of \#22 AWG

All inductors are wound on Magnetics Inc. 55117 toroidal core.

Figure 16. Printed Circuit Board for DFN Device

Calculation	Step-Up	Step-Down	Voltage-Inverting
$\mathrm{t}_{\text {on }} / \mathrm{toff}$	$\frac{V_{\text {out }}+V_{F}-V_{\text {in(min })}}{V_{\text {in(min })}-V_{\text {sat }}}$	$\frac{V_{\text {out }}+V_{F}}{V_{\text {in(min })}-V_{\text {sat }}-V_{\text {out }}}$	$\frac{\left\|V_{\text {out }}\right\|+V_{F}}{V_{\text {in }}-V_{\text {sat }}}$
$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)$	$\frac{1}{f}$	$\frac{1}{f}$	$\frac{1}{f}$
$\mathrm{t}_{\text {off }}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$	$\frac{t_{\text {on }}+t_{\text {off }}}{\frac{t_{\text {on }}}{t_{\text {off }}}+1}$
$\mathrm{t}_{\text {on }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$	$\left(\mathrm{t}_{\text {on }}+\mathrm{t}_{\text {off }}\right)-\mathrm{t}_{\text {off }}$
$\mathrm{C}_{\text {T }}$	$4.0 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.0 \times 10^{-5} \mathrm{t}_{\text {on }}$	$4.0 \times 10^{-5} \mathrm{t}_{\text {on }}$
$\mathrm{I}_{\mathrm{pk} \text { (switch) }}$	$2 \mathrm{l}_{\text {out(max) }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$	$2100 t(m a x)$	$2 \mathrm{l}_{\text {out(max) }}\left(\frac{\mathrm{t}_{\text {on }}}{\mathrm{t}_{\text {off }}}+1\right)$
$\mathrm{R}_{\text {sc }}$	0.3/lpk(switch)	0.3/l $/ \mathrm{pk}$ (switch)	0.3/l $/ \mathrm{pk}$ (switch)
$\mathrm{L}_{\text {(min) }}$	$\left(\frac{\left(V_{\text {in(min) }}-V_{\text {sat }}\right)}{I_{\text {pk(switch }}}\right) t_{\text {on(max }}$	$\left(\frac{\left(\mathrm{V}_{\text {in(min) }}-\mathrm{V}_{\text {sat }}-\mathrm{V}_{\text {out }}\right)}{\mathrm{I}_{\mathrm{pk} \text { (switch) }}}\right) \mathrm{t}_{\text {on(max }}$	$\left(\frac{\left.V_{\text {in(min) }}-V_{\text {sat }}\right)}{I_{\text {pk(switch })}}\right) t_{\text {on(max }}$
C_{0}	$9 \frac{\mathrm{I}_{\text {out }} \mathrm{t}_{\mathrm{on}}}{\mathrm{~V}_{\text {ripple }(\mathrm{pp})}}$	$\frac{\mathrm{I}_{\left.\mathrm{pk}(\text { switch })^{\left(\mathrm{t}_{\text {on }}\right.}+\mathrm{t}_{\text {off }}\right)}^{8 \mathrm{~V}_{\text {ripple }}(\mathrm{pp})}}{}$	$9 \frac{\mathrm{I}_{\text {out }}{ }^{\text {ton }}}{} \mathrm{V}_{\text {ripple(pp) }}$

$\mathrm{V}_{\text {sat }}=$ Saturation voltage of the output switch.
$\mathrm{V}_{\mathrm{F}}=$ Forward voltage drop of the output rectifier.
The following power supply characteristics must be chosen:
$\mathrm{V}_{\text {in }}$ - Nominal input voltage.
$\mathrm{V}_{\text {out }}$ - Desired output voltage, $\left|\mathrm{V}_{\text {out }}\right|=1.25\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)$
$\mathrm{I}_{\text {out }}$ - Desired output current.
$f_{\text {min }}$ - Minimum desired output switching frequency at the selected values of $V_{\text {in }}$ and I_{O}.
$\mathrm{V}_{\text {ripple(pp) }}$ - Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.
NOTE: For further information refer to Application Note AN920A/D and AN954/D.

Figure 17. Design Formula Table

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC33063ADG	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33063ADR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
SC33063ADR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC33063AP1G	$\begin{gathered} \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC33063AVDG	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	98 Units / Rail
MC33063AVDR2G	$\begin{aligned} & \text { SOIC-8 } \\ & \text { (Pb-Free) } \end{aligned}$	
NCV33063AVDR2G*	$\begin{gathered} \hline \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC33063AVPG	$\begin{gathered} \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC34063ADG	SOIC-8 (Pb-Free)	98 Units / Rail
MC34063ADR2G	$\begin{gathered} \text { SOIC-8 } \\ (\mathrm{Pb}-\mathrm{Free}) \end{gathered}$	2500 Units / Tape \& Reel
SC34063ADR2G	$\begin{gathered} \text { SOIC-8 } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Tape \& Reel
MC34063AP1G	$\begin{aligned} & \text { PDIP-8 } \\ & \text { (Pb-Free) } \end{aligned}$	50 Units / Rail
SC34063AP1G	$\begin{gathered} \hline \text { PDIP-8 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC33063MNTXG	$\begin{gathered} \text { DFN8 } \\ \text { (Pb-Free) } \end{gathered}$	4000 Units / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.
*NCV33063A: $T_{\text {low }}=-40^{\circ} \mathrm{C}, \mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. countries.

DFN8, 4x4
CASE 488AF-01
ISSUE C
DATE 15 JAN 2009

1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL TIP.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
5. DETAILS A AND B SHOW OPTIONAL CONSTRUCTIONS FOR TERMINALS

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20	
REF		
b	0.25	
D	4.00	
DS	1.91	
E	2.00	
E2	2.09	BSC
e	0.80	
K	0.20	---
L	0.30	0.50
L1	---	0.15

GENERIC
MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	= Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON15232D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DFN8, 4X4, 0.8P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SCALE 1:1

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
. COLLECTOR, \#2
COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1712-3.3-EVALZ ADP1714-3.3-EVALZ ADP1715-3.3EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP21021.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV

[^0]: 7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

