MC33171, 2, 4, NCV33172, 4

Operational Amplifiers, Single Supply 3.0 V to 44 V, Low Power

Quality bipolar fabrication with innovative design concepts are employed for the MC33171/72/74, NCV33172/74 series of monolithic operational amplifiers. These devices operate at $180 \mu \mathrm{~A}$ per amplifier and offer 1.8 MHz of gain bandwidth product and $2.1 \mathrm{~V} / \mu \mathrm{s}$ slew rate without the use of JFET device technology. Although this series can be operated from split supplies, it is particularly suited for single supply operation, since the common mode input voltage includes ground potential (V_{EE}). With a Darlington input stage, these devices exhibit high input resistance, low input offset voltage and high gain. The all NPN output stage, characterized by no deadband crossover distortion and large output voltage swing, provides high capacitance drive capability, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response.

The MC33171/72/74, NCV33172/74 are specified over the industrial/automotive temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic as well as the surface mount packages.

Features

- Low Supply Current: $180 \mu \mathrm{~A}$ (Per Amplifier)
- Wide Supply Operating Range: 3.0 V to 44 V or $\pm 1.5 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$
- Wide Input Common Mode Range, Including Ground (V_{EE})
- Wide Bandwidth: 1.8 MHz
- High Slew Rate: 2.1 V/ $\mu \mathrm{s}$
- Low Input Offset Voltage: 2.0 mV
- Large Output Voltage Swing: -14.2 V to +14.2 V (with ± 15 V Supplies)
- Large Capacitance Drive Capability: 0 pF to 500 pF
- Low Total Harmonic Distortion: 0.03\%
- Excellent Phase Margin: 60°
- Excellent Gain Margin: 15 dB
- Output Short Circuit Protection
- ESD Diodes Provide Input Protection for Dual and Quad
- NCV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$ www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION
See general marking information in the device marking section on page 10 of this data sheet.

PIN CONNECTIONS

Figure 1. Representative Schematic Diagram
(Each Amplifier)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}} / \mathrm{V}_{\mathrm{EE}}$	± 22	V
Input Differential Voltage Range	$\mathrm{V}_{\mathrm{IDR}}$	$($ Note 1$)$	
Input Voltage Range	V_{IR}	$($ Note 1$)$	V
Output Short Circuit Duration (Note 2)	t_{SC}	Indefinite	sec
Operating Ambient Temperature Range	T_{A}	$($ Note 3$)$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}\right.$ connected to ground, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristics \& Symbol \& Min \& Typ \& Max \& Unit

\hline $$
\begin{aligned}
& \text { Input Offset Voltage }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
& \mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 3) }
\end{aligned}
$$ \& V_{10} \& \& $$
\begin{aligned}
& 2.0 \\
& 2.5
\end{aligned}
$$ \& $$
\begin{aligned}
& 4.5 \\
& 5.0 \\
& 6.5
\end{aligned}
$$ \& mV

\hline Average Temperature Coefficient of Offset Voltage \& $\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$ \& - \& 10 \& - \& $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

\hline $$
\begin{aligned}
& \text { Input Bias Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note 3) }
\end{aligned}
$$ \& IB \& - \& 20 \& $$
\begin{aligned}
& 100 \\
& 200
\end{aligned}
$$ \& nA

\hline $$
\begin{aligned}
& \text { Input Offset Current }\left(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note 3) }
\end{aligned}
$$ \& 10 \& - \& 5.0 \& $$
\begin{aligned}
& 20 \\
& 40
\end{aligned}
$$ \& nA

\hline $$
\begin{aligned}
& \text { Large Signal Voltage Gain }\left(\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}\right) \\
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 3) }
\end{aligned}
$$ \& $A_{\text {VOL }}$ \& $$
\begin{aligned}
& 50 \\
& 25
\end{aligned}
$$ \& \& - \& V/mV

\hline $$
\begin{aligned}
& \text { Output Voltage Swing } \\
& V_{C C}=+5.0 \mathrm{~V}, V_{E E}=0 \mathrm{~V}, R_{L}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 3) } \\
& \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 3) }
\end{aligned}
$$ \& V_{OH}

V_{OL} \& \[
$$
\begin{gathered}
3.5 \\
13.6 \\
13.3
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.3 \\
14.2 \\
- \\
\hline 0.05 \\
-14.2
\end{gathered}
$$

\] \& | - |
:---:
-
0.15
-13.6
-13.3

\hline Output Short Circuit ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) Input Overdrive $=1.0 \mathrm{~V}$, Output to Ground Source Sink \& Isc \& \[
$$
\begin{aligned}
& 3.0 \\
& 15
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.0 \\
& 27
\end{aligned}
$$
\] \& - \& mA

\hline Input Common Mode Voltage Range

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }}(\text { Note 3) }
\end{aligned}
$$ \& VICR \& \multicolumn{3}{|c|}{\[

$$
\begin{aligned}
& V_{E E} \text { to }\left(V_{C C}-1.8\right) \\
& V_{E E} \text { to }\left(V_{C C}-2.2\right)
\end{aligned}
$$
\]} \& V

\hline Common Mode Rejection Ratio ($\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k}$), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ \& CMRR \& 80 \& 90 \& - \& dB

\hline Power Supply Rejection Ratio ($\mathrm{R}_{\mathrm{S}}=100 \Omega$), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ \& PSRR \& 80 \& 100 \& - \& dB

\hline $$
\begin{aligned}
& \text { Power Supply Current (Per Amplifier) } \\
& \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\
& \mathrm{~V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{E E}=-15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {low }} \text { to } \mathrm{T}_{\text {high }} \text { (Note 3) }
\end{aligned}
$$ \& l D \& - \& \[

$$
\begin{aligned}
& 180 \\
& 220
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 250 \\
& 250 \\
& 300
\end{aligned}
$$
\] \& $\mu \mathrm{A}$

\hline
\end{tabular}

1. Either or both input voltages must not exceed the magnitude of V_{CC} or V_{EE}.
2. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{\mathrm{J}}\right)$ is not exceeded.
3. MC3317x

MC3317xV, NCV3317x
$T_{\text {low }}=-40^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {low }}=-40^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {high }}=+85^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {high }}=+125^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ connected to ground, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
Slew Rate $\left(\mathrm{V}_{\text {in }}=-10 \mathrm{~V}\right.$ to $\left.+10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)$ $A_{V}+1$ $A_{V}-1$	SR		$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	-	V/us
Gain Bandwidth Product ($\mathrm{f}=100 \mathrm{kHz}$)	GBW	1.4	1.8	-	MHz
Power Bandwidth $A_{V}=+1.0 R_{L}=10 \mathrm{k}, \mathrm{~V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{THD}=5 \%$	BWp	-	35	-	kHz
$\begin{aligned} & \text { Phase Margin } \\ & R_{L}=10 \mathrm{k} \\ & R_{L}=10 \mathrm{k}, C_{L}=100 \mathrm{pF} \end{aligned}$	ϕ_{m}	-	$\begin{aligned} & 60 \\ & 45 \end{aligned}$	-	Deg
$\begin{aligned} & \text { Gain Margin } \\ & R_{L}=10 \mathrm{k} \\ & R_{L}=10 \mathrm{k}, C_{L}=100 \mathrm{pF} \end{aligned}$	A_{m}	-	$\begin{aligned} & 15 \\ & 5.0 \end{aligned}$		dB
Equivalent Input Noise Voltage $\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1.0 \mathrm{kHz}$	e_{n}	-	32	-	$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Equivalent Input Noise Current ($f=1.0 \mathrm{kHz}$)	In_{n}	-	0.2	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Differential Input Resistance $\mathrm{V}_{\mathrm{cm}}=0 \mathrm{~V}$	$\mathrm{R}_{\text {in }}$	-	300	-	$\mathrm{M} \Omega$
Input Capacitance	$\mathrm{C}_{\text {in }}$	-	0.8	-	pF
Total Harmonic Distortion $A_{V}=+10, R_{L}=10 \mathrm{k}, 2.0 \mathrm{~V}_{\mathrm{pp}} \leq \mathrm{V}_{\mathrm{O}} \leq 20 \mathrm{~V}_{\mathrm{pp}}, \mathrm{f}=10 \mathrm{kHz}$	THD	-	0.03	-	\%
Channel Separation ($\mathrm{f}=10 \mathrm{kHz}$)	CS	-	120	-	dB
Open Loop Output Impedance ($\mathrm{f}=1.0 \mathrm{MHz}$)	z_{0}	-	100	-	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Figure 2. Input Common Mode Voltage Range versus Temperature

Figure 3. Split Supply Output Saturation versus Load Current

Figure 4. Open Loop Voltage Gain and Phase versus Frequency

Figure 6. Normalized Gain Bandwidth Product and Slew Rate versus Temperature

Figure 8. Output Impedance and Frequency

Figure 5. Phase Margin and Percent Overshoot versus Load Capacitance

Figure 7. Small and Large Signal Transient Response

Figure 9. Supply Current versus Supply Voltage

APPLICATIONS INFORMATION - CIRCUIT DESCRIPTION/PERFORMANCE FEATURES

Although the bandwidth, slew rate, and settling time of the MC33171/72/74 amplifier family is similar to low power op amp products utilizing JFET input devices, these amplifiers offer additional advantages as a result of the PNP transistor differential inputs and an all NPN transistor output stage.

Because the input common mode voltage range of this input stage includes the V_{EE} potential, single supply operation is feasible to as low as 3.0 V with the common mode input voltage at ground potential.

The input stage also allows differential input voltages up to $\pm 44 \mathrm{~V}$, provided the maximum input voltage range is not exceeded. Specifically, the input voltages must range between V_{CC} and V_{EE} supply voltages as shown by the maximum rating table. In practice, although not recommended, the input voltages can exceed the V_{CC} voltage by approximately 3.0 V and decrease below the V_{EE} voltage by 0.3 V without causing product damage, although output phase reversal may occur. It is also possible to source up to 5.0 mA of current from V_{EE} through either inputs' clamping diode without damage or latching, but phase reversal may again occur. If at least one input is within the common mode input voltage range and the other input is within the maximum input voltage range, no phase reversal will occur. If both inputs exceed the upper common mode input voltage limit, the output will be forced to its lowest voltage state.

Since the input capacitance associated with the small geometry input device is substantially lower $(0.8 \mathrm{pF})$ than that of a typical JFET (3.0 pF), the frequency response for a given input source resistance is greatly enhanced. This becomes evident in D -to-A current to voltage conversion applications where the feedback resistance can form a pole with the input capacitance of the op amp. This input pole creates a 2 nd Order system with the single pole op amp and is therefore detrimental to its settling time. In this context, lower input capacitance is desirable especially for higher values of feedback resistances (lower current DACs). This input pole can be compensated for by creating a feedback zero with a capacitance across the feedback resistance, if necessary, to reduce overshoot. For $10 \mathrm{k} \Omega$ of feedback resistance, the MC33171/72/74 family can typically settle to within $1 / 2 \mathrm{LSB}$ of 8 bits in $4.2 \mu \mathrm{~s}$, and within $1 / 2 \mathrm{LSB}$ of 12 bits in $4.8 \mu \mathrm{~s}$ for a 10 V step. In a standard inverting unity gain fast settling configuration, the symmetrical slew rate is typically $\pm 2.1 \mathrm{~V} / \mu \mathrm{s}$. In the classic noninverting unity gain configuration the typical output positive slew rate is also $2.1 \mathrm{~V} / \mu \mathrm{s}$, and the corresponding negative slew rate will usually exceed the positive slew rate as a function of the fall time of the input waveform.

The all NPN output stage, shown in its basic form on the equivalent circuit schematic, offers unique advantages over the more conventional NPN/PNP transistor Class AB output stage. A $10 \mathrm{k} \Omega$ load resistance can typically swing within
0.8 V of the positive rail $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and negative rail $\left(\mathrm{V}_{\mathrm{EE}}\right)$, providing a 28.4 Vpp swing from $\pm 15 \mathrm{~V}$ supplies. This large output swing becomes most noticeable at lower supply voltages.
The positive swing is limited by the saturation voltage of the current source transistor Q7, the VBE of the NPN pull-up transistor Q17, and the voltage drop associated with the short circuit resistance, R5. For sink currents less than 0.4 mA , the negative swing is limited by the saturation voltage of the pull-down transistor Q15, and the voltage drop across R4 and R5. For small valued sink currents, the above voltage drops are negligible, allowing the negative swing voltage to approach within millivolts of V_{EE}. For sink currents ($>0.4 \mathrm{~mA}$), diode D3 clamps the voltage across R4. Thus the negative swing is limited by the saturation voltage of Q 15 , plus the forward diode drop of $\mathrm{D} 3\left(\approx \mathrm{~V}_{\mathrm{EE}}+1.0 \mathrm{~V}\right)$. Therefore an unprecedented peak-to-peak output voltage swing is possible for a given supply voltage as indicated by the output swing specifications.

If the load resistance is referenced to V_{CC} instead of ground for single supply applications, the maximum possible output swing can be achieved for a given supply voltage. For light load currents, the load resistance will pull the output to V_{CC} during the positive swing and the output will pull the load resistance near ground during the negative swing. The load resistance value should be much less than that of the feedback resistance to maximize pull-up capability.
Because the PNP output emitter-follower transistor has been eliminated, the MC33171/72/74 family offers a 15 mA minimum current sink capability, typically to an output voltage of $\left(\mathrm{V}_{\mathrm{EE}}+1.8 \mathrm{~V}\right)$. In single supply applications the output can directly source or sink base current from a common emitter NPN transistor for current switching applications.
In addition, the all NPN transistor output stage is inherently faster than PNP types, contributing to the bipolar amplifier's improved gain bandwidth product. The associated high frequency low output impedance (200Ω typ @ 1.0 MHz) allows capacitive drive capability from 0 pF to 400 pF without oscillation in the noninverting unity gain configuration. The 60° phase margin and 15 dB gain margin, as well as the general gain and phase characteristics, are virtually independent of the source/sink output swing conditions. This allows easier system phase compensation, since output swing will not be a phase consideration. The AC characteristics of the MC33171/72/74 family also allow excellent active filter capability, especially for low voltage single supply applications.
Although the single supply specification is defined at 5.0 V , these amplifiers are functional to at least 3.0 V @ $25^{\circ} \mathrm{C}$. However slight changes in parametrics such as bandwidth, slew rate, and DC gain may occur.

MC33171, 2, 4, NCV33172, 4

If power to this integrated circuit is applied in reverse polarity, or if the IC is installed backwards in a socket, large unlimited current surges will occur through the device that may result in device destruction.

As usual with most high frequency amplifiers, proper lead dress, component placement and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input
pole for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supply decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature.

The output of any one amplifier is current limited and thus protected from a direct short to ground. However, under such conditions, it is important not to allow the device to exceed the maximum junction temperature rating. Typically for $\pm 15 \mathrm{~V}$ supplies, any one output can be shorted continuously to ground without exceeding the maximum temperature rating.

Figure 10. AC Coupled Noninverting Amplifier with Single +5.0 V Supply

BW (-3.0 dB) $=200 \mathrm{kHz}$

Figure 12. DC Coupled Inverting Amplifier Maximum Output Swing with Single +5.0 V Supply

Figure 14. Active High-Q Notch Filter

Figure 11. AC Coupled Inverting Amplifier with Single +5.0 V Supply

Offset Nulling range is approximately $\pm 80 \mathrm{mV}$ with a 10 k potentiometer, MC33171 only.

Figure 13. Offset Nulling Circuit

For less than 10% error for operational amplifier, where f_{0} and GBW are expressed in Hz .

Figure 15. Active Bandpass Filter

ORDERING INFORMATION

Op Amp Function	Device	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
Single	MC33171DG	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
	MC33171DR2G		$\begin{gathered} \hline \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
	MC33171PG		$\begin{gathered} \text { PDIP } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail
Dual	MC33172DG	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \hline \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
	MC33172DR2G		$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
	MC33172PG		$\begin{gathered} \hline \text { PDIP } \\ \text { (Pb-Free) } \end{gathered}$	50 Units/Rail
	MC33172VDG	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	98 Units/Rail
	MC33172VDR2G		$\begin{gathered} \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
	NCV33172DR2G*		$\begin{gathered} \hline \mathrm{SO}-8 \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
Quad	MC33174DG	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \text { SO-14 } \\ \text { (Pb-Free) } \end{gathered}$	55 Units/Rail
	MC33174DR2G		$\begin{gathered} \text { SO-14 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
	MC33174DTBG		$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	96 Units/Rail
	MC33174DTBR2G		$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel
	MC33174PG		$\begin{gathered} \text { PDIP } \\ \text { (Pb-Free) } \end{gathered}$	25 Units/Rail
	MC33174VDG	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+125^{\circ} \mathrm{C}$	$\begin{gathered} \text { SO-14 } \\ \text { (Pb-Free) } \end{gathered}$	55 Units/Rail
	MC33174VDR2G		$\begin{gathered} \text { SO-14 } \\ \text { (Pb-Free) } \end{gathered}$	2500 / Tape \& Reel
	MC33174VPG		$\begin{gathered} \hline \text { PDIP } \\ \text { (Pb-Free) } \end{gathered}$	25 Units/Rail
	NCV33174DTBR2G*		$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV prefix for automotive and other applications requiring site and change controls.

MARKING DIAGRAMS

		SO－8
PDIP－8	SO－8	MC33172VD
P SUFFIX	D SUFFIX	NCV33172D
CASE 626	CASE 751	CASE 751
	8 日＿甘＿日	8 日 Н H
MC3317x	$3317 \times$	3172 V
\bigcirc AWL	ALYW	ALYW
\bigcirc YYWWG	田	1明
1『 『	$1 甘 甘 甘 甘$	$1 甘 甘 甘$ \＃

PDIP－14	PDIP－14	SO－14	SO－14
P SUFFIX	VP SUFFIX	D SUFFIX	VD SUFFIX
CASE 646	CASE 646	CASE 751A	CASE 751A
ת	$14 \text { ת }$	14月⿴⿱冂一⿱一一厶儿且日且且	日且且且且
MC33174P ○ AWLYYWWG	\｛ MC33174VP	MC33174DG AWLYWW	MC33174VDG AWLYWW

TSSOP－14	TSSOP－14
MC33174	NCV33174
CASE 948G	CASE 948G
$\begin{aligned} & 14 \\ & \text { ABABABH } \end{aligned}$	14 4 ABABA
MC33 174	NCV3 $\begin{gathered}\text { N174 } \\ \text { ALYW．} \\ 0\end{gathered}$
getyeve 1	EGY日G日 1

$\begin{array}{ll}\mathrm{X} & =1 \text { or } 2 \\ \mathrm{~A} & =\text { Assembly Location } \\ \mathrm{WL}, \mathrm{L} & =\text { Wafer Lot } \\ \mathrm{Y}, \mathrm{Y} & =\text { Year } \\ \mathrm{WW}, \mathrm{W} & =\text { Work Week } \\ \mathrm{G} \text { or } & =\text { Pb－Free Package }\end{array}$
（Note：Microdot may be in either location）

SCALE 1:1

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. AC IN } \\
& \text { 2. DC }+ \text { IN } \\
& \text { 3. DC }- \text { IN } \\
& \text { 4. AC IN } \\
& \text { 5. GROUND } \\
& \text { 6. OUTPUT } \\
& \text { 7. AUXILIARY } \\
& \text { 8. VCC }
\end{aligned}
$$

| DOCUMENT NUMBER: | 98ASB42420B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-8 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLES ON PAGE 2

PDIP-14
CASE 646-06
ISSUE S
DATE 22 APR 2015

NOTES:

1. DIMENSIONING AND TOLERANCING
. DIMENSIONS AIMENSION. N ME AGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
2. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD F
NOT TO EXCEED 0.10 INCH.
NOT TO EXCEED 0.10 INCH.
3. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
4. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED
5. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
6. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	----	0.210	---	5.33		
A1	0.015	----	0.38	---		
A2	0.115	0.195	2.92	4.95		
b	0.014	0.022	0.35	0.56		
b2	0.060 TYP		1.52 TYP			
C	0.008	0.014	0.20	0.36		
D	0.735	0.775	18.67	19.69		
D1	0.005	----	0.13	---		
E	0.300	0.325	7.62	8.26		
E1	0.240	0.280	6.10	7.11		
e	0.100		BSC	2.54		BSC
eB	----	0.430	---	10.92		
L	0.115	0.150	2.92	3.81		
M	----	10°	---			

GENERIC MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " $\stackrel{\rightharpoonup}{ }$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42428B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | PDIP-14 | PAGE 1 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
3. EMIT
4. NO

CONNECTION
5. EMITTER
6. BASE
7. COLLECTOR
8. COLLECTOR
9. BASE
10. EMITTER 11. NO

CONNECTION
12. EMITTER
13. BASE
14. COLLECTOR

STYLE 5:
PIN 1. GATE
3. SOURCE
4. NO CONNECTION
4. NO CONN
5. SOURCE
6. DRAIN
7. GATE
. GATE
9. DRAIN
10. SOURCE
11. NO CONNECTION
12. SOURCE
13. DRAIN

STYLE 9:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE 3. ANODE/CATHODE 4. NO CONNECTION 5. ANODE/CATHODE . ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE

1. ANODE/CATHODE
2. ANODE/CATHODE
3. NO CONNECTION
4. ANODE/CATHODE
5. ANOMMON CATHODE

DOCUMENT NUMBER:	98ASB42428B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	PDIP-14	PAGE 2 OF 2

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	4.80	5.00	0.189	0.197
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
H	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0	0°	8°	0
	\circ	8		
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^0] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

PIN 1.	EMITTER
2.	COLLECTOR
3.	COLLECTOR
4.	EMITTER
5.	EMITTER
6.	BASE
7.	BASE
8.	EMITTER
STYLE 5:	
PIN 1.	DRAIN
2.	DRAIN
3.	DRAIN
4.	DRAIN
5.	GATE
6.	GATE
7.	SOURCE
8.	SOURCE

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.
DESCRIPTION:	SOIC-8 NB	PAGE 2 OF 2

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

SOIC-14 NB
CASE 751A-03
ISSUE L
SCALE 1:1

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE

MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27	BSC	0.050	BSC
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-14 NB | PAGE 1 OF 2 |

[^1] rights of others.

STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
4. COMMON ANODE
STYLE $5:$

PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHOD
4. ANODE/CATHOD
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHOD
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 2 :
CANCELLED

STYLE 3:
PIN 1. NO CONNECTION 2. ANODE 3. ANODE
4. NO CONNECTION 5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE

STYLE 6

PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
5. CATHODE
6. CATHODE
7. CATHOD
8. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE

STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
11. COMMON CATHOD
13. ANODE/CATHODE
14. ANODE/CATHODE

STYLE 4:
PIN 1. NO CONNECTION 2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE

STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
11. NO CONNECTION
12. ANODE/CATHODE
12. ANODE/CATHODE
13. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE

DOCUMENT NUMBER:	98ASB42565B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SOIC-14 NB	

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT MOLD FLASH OR GATE BURRS
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.90	5.10	0.193	0.200
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65	BSC	0.026	
BSC				
H	0.50	0.60	0.020	0.024
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252	BSC
M	$0{ }^{\circ}$	8°	0°	8°

GENERIC MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \bullet ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70246A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-14 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Operational Amplifiers - Op Amps category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NCV33072ADR2G LM358SNG 430227FB UPC824G2-A LT1678IS8 042225DB 058184EB UPC822G2-A UPC259G2-A UPC258G2-A NTE925 AZV358MTR-G1 AP4310AUMTR-AG1 HA1630D02MMEL-E HA1630S01LPEL-E SCY33178DR2G NJU77806F3-TE1 NCV5652MUTWG NCV20034DR2G LM324EDR2G LM2902EDR2G NTE7155 NTE778S NTE871 NTE924 NTE937 MCP6V17TE/MNY MCP6V19-E/ST MXD8011HF MCP6V17T-E/MS SCY6358ADR2G ADA4523-1BCPZ LTC2065HUD\#PBF ADA4523-1BCPZRL7 NJM2904CRB1-TE1 2SD965T-R RS6332PXK BDM8551 BDM321 MD1324 COS8052SR COS8552SR COS8554SR COS2177SR COS2353SR COS724TR ASOPD4580S-R RS321BKXF ADA4097-1HUJZ-RL7 NCS20282FCTTAG

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

