MC74AC245, MC74ACT245

Octal Bidirectional Transceiver with 3-State Inputs/Outputs

The MC74AC245/74ACT245 contains eight non-inverting bidirectional buffers with 3-state outputs and is intended for bus-oriented applications. Current sinking capability is 24 mA at both the A and B ports. The Transmit/Receive (T/ $\overline{\mathrm{R}}$) input determines the direction of data flow through the bidirectional transceiver. Transmit (active-HIGH) enables data from A ports to B ports; Receive (active-LOW) enables data from B ports to A ports. The Output Enable input, when HIGH, disables both A and B ports by placing them in a High Z condition.

Features

- Noninverting Buffers
- Bidirectional Data Path
- A and B Outputs Source/Sink 24 mA
- 'ACT245 has TTL Compatible Inputs
- These are $\mathrm{Pb}-$ Free Devices

PIN ASSIGNMENT

PIN	FUNCTION
OE	Output Enable Input
T / R	Transmit/Receive Input
$A_{0}-A_{7}$	Side A 3-State Inputs or 3-State Outputs
$B_{0}-B_{7}$	Side B 3-State Inputs or 3-State Outputs

TRUTH TABLES

Inputs		Outputs
OE	T / R	
L	L	Bus B Data to Bus A
L	H	Bus A Data to Bus B
H	X	High Z State

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

SOIC-20W DW SUFFIX CASE 751D

TSSOP-20
DT SUFFIX
CASE 948E

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

[^0]

Figure 1.

MC74AC245, MC74ACT245

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND) (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IK	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 50	mA
Iout	DC Output Sink/Source Current	± 50	mA
ICC	DC Supply Current, per Output Pin	± 50	mA
IGND	DC Ground Current, per Output Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
TJ	Junction Temperature Under Bias	140	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 2) $\begin{array}{r}\text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{gathered} 65.8 \\ 110.7 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand VoltageHuman Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	$\begin{aligned} & >2000 \\ & >200 \\ & >1000 \end{aligned}$	V
ILatchup	Latchup Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 6)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. IOUT absolute maximum rating must be observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	'AC	2.0	5.0	6.0	V
		'ACT	4.5	5.0	5.5	
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V_{CC}	V
t_{r}, t_{f}	Input Rise and Fall Time (Note 7) 'AC Devices except Schmitt Inputs	$\mathrm{V}_{\mathrm{Cc}} @ 3.0 \mathrm{~V}$	-	150	-	ns / V
		$\mathrm{V}_{\text {Cc }} @ 4.5 \mathrm{~V}$	-	40	-	
		V_{Cc} @ 5.5 V	-	25	-	
t_{r}, t_{f}	Input Rise and Fall Time (Note 8) 'ACT Devices except Schmitt Inputs	V_{Cc} @ 4.5 V	-	10	-	ns / V
		$\mathrm{V}_{\mathrm{Cc}} @ 5.5 \mathrm{~V}$	-	8.0	-	
T_{A}	Operating Ambient Temperature Range		-40	25	85	${ }^{\circ} \mathrm{C}$
$\mathrm{IOH}^{\text {a }}$	Output Current - High		-	-	-24	mA
l OL	Output Current - Low		-	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
7. $V_{\text {IN }}$ from 30% to $70 \% V_{\text {CC }}$; see individual Data Sheets for devices that differ from the typical input rise and fall times.
8. $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V ; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

Symbol	Parameter	V_{Cc} (V)			74AC	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	IOUT $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{array}{ll} { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & 12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{array}$
1 N	Maximum Input Leakage Current	5.5	-	± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IOZT	Maximum 3-State Current	5.5	-	± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \end{aligned}$
Iold	\dagger Minimum Dynamic	5.5	-	-	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$		5.5	-	-	-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$ Min
$I_{\text {cc }}$	Maximum Quiescent Supply Current	5.5	-	8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

[^1]AC CHARACTERISTICS (For Figures and Waveforms - See AND8277/D at www.onsemi.com)

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}{ }^{*}$ (V)	74AC			74AC		Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \hline \end{gathered}$			
			Min	Typ	Max	Min	Max		
$t_{\text {PLL }}$	Propagation Delay $A_{n} \text { to } B_{n} \text { or } B_{n} \text { to } A_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns	3-5
$t_{\text {PHL }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.0 \end{aligned}$	ns	3-5
tPzH	Output Enable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline 11.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 12.5 \\ 9.0 \end{gathered}$	ns	3-7
$t_{\text {PzL }}$	Output Enable Time	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns	3-8
$t_{\text {PHz }}$	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.0 \end{aligned}$	ns	3-7
tpLz	Output Disable Time	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 10.0 \end{aligned}$	ns	3-8

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
DC CHARACTERISTICS

Symbol	Parameter	V_{Cc} (V)			74ACT	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{array}{cc} * \mathrm{~V}_{\mathrm{IN}}= & \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{array}$
$\mathrm{V}_{\text {OL }}$	Maximum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}} \quad 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{aligned}$
IN	Maximum Input Leakage Current	5.5	-	± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\Delta l_{\text {CCT }}$	Additional Max. Icc/Input	5.5	0.6	-	1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
$\mathrm{l}_{\text {Ozt }}$	Maximum 3-State Current	5.5	-	± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
Iold	\dagger Minimum Dynamic Output Current	5.5	-	-	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$		5.5	-	-	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
I_{CC}	Maximum Quiescent Supply Current	5.5	-	8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

[^2]\dagger Maximum test duration 2.0 ms , one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See AND8277/D at www.onsemi.com)

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}{ }^{*}$ (V)	74ACT			74ACT		Unit	Fig. No.
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			
			Min	Typ	Max	Min	Max		
$t_{\text {PLH }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	5.0	1.5	4.0	7.5	1.5	8.0	ns	3-5
$\mathrm{t}_{\text {PHL }}$	Propagation Delay, A_{n} to B_{n} or B_{n} to A_{n}	5.0	1.5	4.0	8.0	1.0	9.0	ns	3-5
tPZH	Output Enable Time	5.0	1.5	5.0	10	1.5	11.0	ns	3-7
tpzL	Output Enable Time	5.0	1.5	5.5	10	1.5	12.0	ns	3-8
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	1.5	5.5	10	1.0	11.0	ns	3-7
tplz	Output Disable Time	5.0	2.0	5.0	10	1.5	11.0	ns	3-8

*Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	15	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	45	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74AC245DWG	$\begin{aligned} & \text { SOIC-20 } \\ & \text { (Pb-Free) } \end{aligned}$	38 Units／Rail
MC74AC245DWR2G	$\begin{aligned} & \text { SOIC-20 } \\ & \text { (Pb-Free) } \end{aligned}$	1000 ／Tape \＆Reel
MC74ACT245DWG	$\begin{aligned} & \text { SOIC-20 } \\ & \text { (Pb-Free) } \end{aligned}$	38 Units／Rail
MC74ACT245DWR2G	$\begin{aligned} & \text { SOIC-20 } \\ & \text { (Pb-Free) } \end{aligned}$	1000 ／Tape \＆Reel
MC74AC245DTG	$\begin{aligned} & \text { TSSOP-20 } \\ & \text { (Pb-Free) } \end{aligned}$	75 Units／Rail
MC74AC245DTR2G	$\begin{gathered} \text { TSSOP-20 } \\ \text { (Pb-Free) } \end{gathered}$	2500 ／Tape \＆Reel
MC74ACT245DTG	$\begin{gathered} \text { TSSOP-20 } \\ \text { (Pb-Free) } \end{gathered}$	75 Units／Rail
MC74ACT245DTR2G	$\begin{aligned} & \text { TSSOP-20 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 ／Tape \＆Reel

\dagger For information on tape and reel specifications，including part orientation and tape sizes，please refer to our Tape and Reel Packaging Specifications Brochure，BRD8011／D．

MARKING DIAGRAMS

SOIC－20W

20日BABABABAB

20 ННННННННН
ACT

A＝Assembly Location
WL，L＝Wafer Lot
YY，Y＝Year
WW，W＝Work Week
G or •＝Pb－Free Package
（Note：Microdot may be in either location）

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S 74LVX245MTC 74ALVC16245MTDX 74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115 74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D. 112 74AHCT245D. 112 SN74LVCH16952ADGGR
CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112 74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA 74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG 74LVC162245APAG8

[^0]: $\mathrm{H}=\mathrm{HIGH}$ Voltage Level
 L = LOW Voltage Level
 X = Immaterial

[^1]: *All outputs loaded; thresholds on input associated with output under test.
 \dagger Maximum test duration 2.0 ms , one output loaded at a time.
 NOTE: $I_{I N}$ and $I_{C C} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

[^2]: *All outputs loaded; thresholds on input associated with output under test.

