MC74HC160A

Presettable Counters

High-Performance Silicon-Gate CMOS
The MC74HC160A is identical in pinout to the LS160. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC160A is a programmable BCD counters with asynchronous Reset input.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 234 FETs or 58.5 Equivalent Gates
- These are $\mathrm{Pb}-$ Free Devices

Figure 1. Logic Diagram

Device	Count Mode	Reset Mode
HC160	BCD	Asynchronous

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

FUNCTION TABLE

Inputs					Outputs
Clock	Reset*	Load	Enable P	Enable ${ }^{\text {T }}$	Q
\checkmark	L	X	X	X	Reset
\checkmark	H	L	X	X	Load Preset Data
$\widetilde{ }$	H	H	H	H	Count
\checkmark	H	H	L	X	No Count
J	H	H	X	L	No Count

*HC160 is an Asynchronous Reset Device.
H = High Level
L = Low Level
X = Don't Care

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air, Plastic or Ceramic DIP†		
		750	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Package \dagger	500	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: - $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	(Figure 3)	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	5000
		ns		
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	400

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit	
				$\begin{aligned} & -55 \text { to } \\ & 25^{\circ} \mathrm{C} \end{aligned}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
		$\begin{array}{\|lc} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left\|\left.\right\|^{\text {out }}\right\| \leq 2.4 \mathrm{~m} \\ & \left\|\left.\right\|_{\text {out }} \leq 4.0 \mathrm{~mA}\right. \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$		
V_{OL}	Maximum Low-Level Output Voltage	$\begin{aligned} & V_{\text {in }} \mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad$$\| \|_{\text {out }} \mid \leq 2.4 \mathrm{~m}$ $\| \|_{\text {out }} \mid \leq 4.0 \mathrm{~mA}$ $\| \|_{\text {out }} \mid \leq 5.2 \mathrm{~mA}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$	

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50% Duty Cycle)* (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 30 \\ & 35 \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & 24 \\ & 28 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 20 \\ & 24 \end{aligned}$	MHz
$t_{\text {PLH }}$	Maximum Propagation Delay, Clock to Q (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 170 \\ & 34 \\ & 29 \end{aligned}$	$\begin{gathered} 215 \\ 43 \\ 37 \end{gathered}$	$\begin{gathered} 255 \\ 51 \\ 43 \end{gathered}$	ns
$t_{\text {PHL }}$		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 205 \\ 41 \\ 35 \end{gathered}$	$\begin{gathered} 255 \\ 51 \\ 43 \end{gathered}$	$\begin{gathered} \hline 310 \\ 62 \\ 53 \end{gathered}$	
$t_{\text {PHL }}$	Maximum Propagation Delay, Reset to Q (HC160A Only) (Figures 4 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 210 \\ 42 \\ 36 \end{gathered}$	$\begin{gathered} 265 \\ 53 \\ 45 \end{gathered}$	$\begin{aligned} & \hline 315 \\ & 63 \\ & 54 \end{aligned}$	ns
$t_{\text {PLH }}$	Maximum Propagation Delay, Enable T to Ripple Carry Out (Figures 5 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 160 \\ & 32 \\ & 27 \end{aligned}$	$\begin{gathered} 200 \\ 40 \\ 34 \end{gathered}$	$\begin{gathered} 240 \\ 48 \\ 41 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 195 \\ 39 \\ 33 \end{gathered}$	$\begin{gathered} \hline 245 \\ 49 \\ 42 \end{gathered}$	$\begin{gathered} 295 \\ 59 \\ 50 \end{gathered}$	
$t_{\text {PLH }}$	Maximum Propagation Delay, Clock to Ripple Carry Out (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 175 \\ & 35 \\ & 30 \end{aligned}$	$\begin{gathered} 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 265 \\ 53 \\ 45 \end{gathered}$	ns
tPHL		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{gathered} 215 \\ 43 \\ 37 \end{gathered}$	$\begin{gathered} 270 \\ 54 \\ 46 \end{gathered}$	$\begin{gathered} 325 \\ 65 \\ 55 \end{gathered}$	
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to Ripple Carry Out (HC160A Only) (Figures 4 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} \hline 275 \\ 55 \\ 47 \end{gathered}$	$\begin{gathered} \hline 330 \\ 66 \\ 56 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

*Applies to noncascaded/nonsynchronously clocked configurations only. With synchronously cascaded counters, (1) Clock to Ripple Carry Out propagation delays, (2) Enable T or Enable P to Clock setup times, and (3) Clock to Enable T or Enable P hold times determine $f_{\text {max }}$. However, if Ripple Carry Out of each stage is tied to the Clock of the next stage (nonsynchronously clocked), the $f_{m a x}$ in the table above is applicable. See Applications Information in this data sheet.

$\mathrm{C}_{\text {PD }}$		Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	pF
	Power Dissipation Capacitance (Per Package)*	60	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}^{2 f}+I_{C C} V_{C C}$.

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	$\underset{\mathbf{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Preset Data Inputs to Clock (Figure 6)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 150 \\ & 30 \\ & 26 \end{aligned}$	$\begin{gathered} 190 \\ 38 \\ 33 \end{gathered}$	$\begin{gathered} 225 \\ 45 \\ 38 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Load to Clock (Figure 6)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 135 \\ & 27 \\ & 23 \end{aligned}$	$\begin{aligned} & 170 \\ & 34 \\ & 29 \end{aligned}$	$\begin{gathered} 205 \\ 41 \\ 35 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Enable T or Enable P to Clock (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 200 \\ 40 \\ 34 \end{gathered}$	$\begin{gathered} 250 \\ 50 \\ 43 \end{gathered}$	$\begin{aligned} & 300 \\ & 60 \\ & 51 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Preset Data Inputs (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 50 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & \hline 65 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Load (Figure 6)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock to Enable T or Enable P (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	ns
trec	Minimum Recovery Time, Reset Inactive to Clock (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & 155 \\ & 31 \\ & 26 \end{aligned}$	$\begin{aligned} & 190 \\ & 38 \\ & 32 \end{aligned}$	ns
trec	Minimum Recovery Time, Load Inactive to Clock (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 125 \\ & 25 \\ & 21 \end{aligned}$	$\begin{aligned} & \hline 155 \\ & 31 \\ & 26 \end{aligned}$	$\begin{gathered} \hline 190 \\ 38 \\ 32 \end{gathered}$	ns
$t_{\text {w }}$	Minimum Pulse Width, Clock (Figure 3)	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 120 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \\ & 17 \end{aligned}$	$\begin{aligned} & 120 \\ & 24 \\ & 20 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{aligned} & 1000 \\ & 500 \\ & 400 \end{aligned}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC160A

FUNCTION DESCRIPTION

The HC160A is a programmable 4-bit synchronous counters that feature parallel Load, synchronous or asynchronous Reset, a Carry Output for cascading, and count-enable controls. The HC160A is a BCD counter with asynchronous Reset.

INPUTS

Clock (Pin 2)

The internal flip-flops toggle and the output count advances with the rising edge of the Clock input. In addition, control functions, such as loading occur with the rising edge of the Clock input.

Preset Data Inputs P0, P1, P2, P3 (Pins 3, 4, 5, 6)

These are the data inputs for programmable counting. Data on these pins may be synchronously loaded into the internal flip-flops and appear at the counter outputs. P0 (pin 3) is the least-significant bit and P3 (pin 6) is the most-significant bit.

OUTPUTS

Q0, Q1, Q2, Q3 (Pins 14, 13, 12, 11)
These are the counter outputs (BCD or binary). Q0 (pin 14) is the least-significant bit and Q3 (pin 11) is the most-significant bit.

Ripple Carry Out (Pin 15)

When the counter is in its maximum state (1001 for the BCD counters or 1111 for the binary counters), this output goes high, providing an external look-ahead carry pulse that may be used to enable successive cascaded counters. Ripple Carry Out remains high only during the maximum count state. The logic equation for this output is:

$$
\begin{aligned}
\text { Ripple Carry Out }= & \begin{array}{l}
\text { Enable } \mathrm{T} \bullet \mathrm{Q} 0 \bullet \overline{\mathrm{Q} 1} \bullet \overline{\mathrm{Q} 2} \bullet \mathrm{Q} 3 \\
\\
\text { for BCD counters }
\end{array}
\end{aligned}
$$

CONTROL FUNCTIONS

Resetting

A low level on the Reset pin (pin 1) resets the internal flip-flops and sets the outputs (Q0 through Q3) to a low level. The HC160A resets asynchronously.

Loading

With the rising edge of the Clock, a low level on Load (pin 9) loads the data from the Preset Data Input pins (P0, P1, P2, P3) into the internal flip-flops and onto the output pins, Q0 through Q3. The count function is disabled as long as Load is low.

Although the HC 160 A is a BCD counters, they may be programmed to any state. If they are loaded with a state disallowed in BCD code, they will return to their normal count sequence within two clock pulses (see the Output State Diagram).

Count Enable/Disable

These devices have two count-enable control pins: Enable P (pin 7) and Enable T (pin 10). The devices count when these two pins and the Load pin are high. The logic equation is:
Count Enable = Enable P • Enable T • Load
The count is either enabled or disabled by the control inputs according to Table 1. In general, Enable P is a count-enable control; Enable T is both a count-enable and a Ripple-Carry Output control.

Table 1. COUNT ENABLE/DISABLE

Control Inputs		Result at Outputs							
Load	Enable P	Enable T	Q0 - Q3	Ripple Carry Out					
H	H	H	Count	High when Q0-Q3 are max-					
L	H	H	No Count	imum*		X	L	H	No Count
:---:	:---:	:---	:---						
High when Q0-Q3 are max- imum*									
X	X	L	No Count						

*Q0 through Q3 are maximum for the HC160A when Q3 Q2 Q1 Q0 $=1001$.

Figure 2. Output State Diagrams HC160A BCD Counters

MC74HC160A

SWITCHING WAVEFORMS

Figure 3.

Figure 5.

Figure 4.

Figure 6.

TEST CIRCUIT

*Includes all probe and jig capacitance
Figure 8.

MC74HC160A

MC74HC160A

Sequence illustrated in waveforms:

1. Reset outputs to zero.
2. Preset to BCD seven.
3. Count to eight, nine, zero, one, two, and three.
4. Inhibit.

Figure 9. MC74HC160A Timing Diagram

TYPICAL APPLICATIONS CASCADING

NOTE: When used in these cascaded configurations the clock $f_{\max }$ guaranteed limits may not apply. Actual performance will depend on number of stages. This limitation is due to set up times between Enable (Port) and Clock.

Figure 10. N-Bit Synchronous Counters

Figure 11. Nibble Ripple Counter

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC160ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC160ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74HC160ADTG	TSSOP-16*	96 Units / Rail
MC74HC160ADTR2G	TSSOP-16*	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D, 118
TPIC6C595PWG4 74VHC164MTCX MIC5891BN CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11
74HC164T14-13 STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653
74VHC4020FT(BJ) 74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT. 653
74VHC164FT(BE) 74HCT594DB. 112 74HCT597DB.112 74LV164D. 112 74LV165D. 112 74LV4094D.112 74LV4094PW. 112
CD74HC165M 74AHC594T16-13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13

