8-Input Data Selector/ Multiplexer with 3-State Outputs

High-Performance Silicon-Gate CMOS

MC74HC251A

The MC54/74HC251 is identical in pinout to the LS251. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device selects one of the eight binary Data Inputs, as determined by the Address Inputs. The Output Enable pin must be a low level for the selected data to appear at the outputs. If Output Enable is high, both the Y and the \overline{Y} outputs are in the high-impedance state. This 3-state feature allows the HC251 to be used in bus-oriented systems.

The HC251 is similar in function to the HC251 which does not have 3-state outputs.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

FUNCTION TABLE

	I	Out	outs		
A2	A1	A0	Output Enabled	Y	Ŧ
X L L L H H H H H	X L L H H L L H H H	X L H L H L H L H	Η	Z D0 D1 D2 D3 D4 D5 D6 D7	Z D0 D1 D2 D3 D4 D5 D6 D7

Z = high impedance

D0, D1, ..., D7 = the level of the respective D input.

MAXIMUM RATINGS

Symbol	Parameter	Parameter		
V _{CC}	DC Supply Voltage (Referenced to	-0.5 to + 7.0	V	
V _{in}	DC Input Voltage (Referenced to G	–1.5 to V _{CC} + 1.5	V	
V _{out}	DC Output Voltage (Referenced to	GND)	–0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±25	mA	
l _{out}	DC Output Current, per Pin	±50	mA	
I _{CC}	DC Supply Current, V_{CC} and GND	±75	mA	
P _D	Power Dissipation in Still Air	SOIC Package TSSOP Package	500 TBD	mW
T _{stg}	Storage Temperature		-65 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+125	°C
t _r , t _f	Input Rise and Fall Time (Figure 2)	$V_{CC} = 2.0 V$ $V_{CC} = 4.5 V$ $V_{CC} = 6.0 V$	0 0 0	1000 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MC74HC251A

		Guaranteed Limit		mit			
Symbol	Parameter	Test Conditions	V _{CC} V	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \ \mu\text{A} \end{array}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ I_{out} \leq 20 \ \mu\text{A} \end{array}$	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
V _{OH}	Minimum High–Level Output Voltage	$\begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \; \mu A \end{array}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$ \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & \left I_{out} \right \leq 4.0 \text{ mA} \\ \left I_{out} \right \leq 5.2 \text{ mA} \end{array} $	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low–Level Output Voltage	$\begin{array}{l} V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{out} \leq 20 \; \mu A \end{array}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$\begin{array}{l l} V_{in} = V_{IH} \text{ or } V_{IL} & \left I_{out}\right \leq 4.0 \text{ mA} \\ \left I_{out}\right \leq 5.2 \text{ mA} \end{array}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	± 0.1	± 1.0	± 1.0	μA
I _{OZ}	Maximum Three-State Leakage Current	Output in High–Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$ $V_{out} = V_{CC} \text{ or GND}$	6.0	± 0.5	±5.0	± 10	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \ \mu A$	6.0	8	80	160	μΑ

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

MC74HC251A

			Gu	aranteed Li	mit	
Symbol	Parameter	V _{CC} V	– 55 to 25°C	≤ 85 °C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input D to Output Y or \overline{Y} (Figures 2, 3 and 6)	2.0 4.5 6.0	185 37 31	230 46 39	280 56 48	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Input A to Output Y or Ÿ (Figures 3 and 6)	2.0 4.5 6.0	205 41 35	255 51 43	310 62 53	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output Y (Figures 5 and 7)	2.0 4.5 6.0	195 39 33	245 49 42	295 59 50	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output Y (Figures 5 and 7)	2.0 4.5 6.0	145 29 25	180 36 31	220 44 38	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Output ₹ (Figures 5 and 7)	2.0 4.5 6.0	220 44 37	275 55 47	330 66 56	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Output \overline{Y} (Figures 5 and 7)	2.0 4.5 6.0	150 30 26	190 38 33	225 45 38	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output (Figures 2 and 6)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	15	15	15	pF

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

		Typical @ 25°C, V _{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Per Package)	36	pF

PIN DESCRIPTIONS

INPUTS

D0, D1, ..., D7 (Pins 4, 3, 2, 1, 15, 14, 13, 12)

Data inputs. Data on one of these eight binary inputs may be selected to appear on the output.

CONTROL INPUTS

A0, A1, A2 (Pins 11, 10, 9)

Address inputs. The data on these pins are the binary address of the selected input (see the Function Table).

Output Enable (Pin 7)

Output Enable. This input pin must be at a low level for the selected data to appear at the outputs. If the Output Enable pin is high, both the Y and \overline{Y} outputs are taken to the high–impedance state.

OUTPUTS

Y, Y (Pins 5, 6)

Data outputs. The selected data is presented at these pins in both true (Y output) and complemented (\overline{Y} output) forms.

MC74HC251A

SWITCHING WAVEFORMS

Figure 2.

Figure 5.

Figure 6.

*Includes all probe and jig capacitance

Figure 7.

Figure 8. Expanded Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping [†]	
MC74HC251ADG		48 Units / Rail	
MC74HC251ADR2G	SOIC-16 (Pb-Free)	2500 Tape & Reel	
NLV74HC251ADR2G*		2500 Tape & Reel	
MC74HC251ADTG	TSSOP-16	96 Units / Rail	
MC74HC251ADTR2G	(Pb-Free)	2500 Tape & Reel	

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		
ON Semiconductor and 👊 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1		
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.					

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652