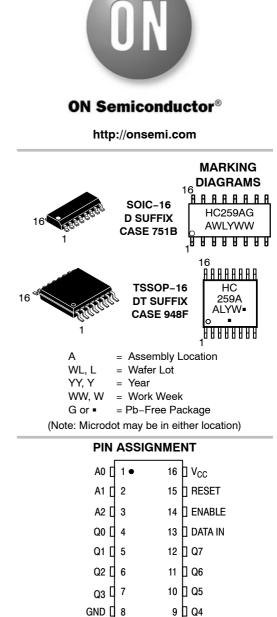
# 8-Bit Addressable Latch 1-of-8 Decoder


## High-Performance Silicon-Gate CMOS

The MC74HC259A is identical in pinout to the LS259. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC259A has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode all outputs are LOW and unaffected by the address and data inputs. When operating the HC259A as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

### Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant



### MODE SELECTION TABLE

| Enable | Reset | Mode                 |
|--------|-------|----------------------|
|        | ц     | Addressable Latch    |
|        |       | Memory               |
|        |       | 8-Line Demultiplexer |
|        |       | Reset                |
| н      | L     | Reset                |

### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

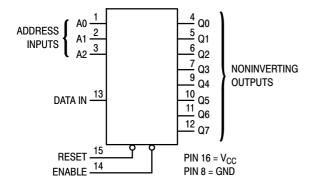



Figure 1. Logic Diagram

### MAXIMUM RATINGS

#### Symbol Parameter Value Unit V<sub>CC</sub> DC Supply Voltage (Referenced to GND) -0.5 to +7.0 V DC Input Voltage (Referenced to GND) V Vin -0.5 to V<sub>CC</sub> + 0.5 -0.5 to V<sub>CC</sub> + 0.5 Vout DC Output Voltage (Referenced to GND) ٧ DC Input Current, per Pin ±20 mΑ l<sub>in</sub> DC Output Current, per Pin ±25 lout mΑ DC Supply Current, V<sub>CC</sub> and GND Pins ±50 mΑ I<sub>CC</sub> $\mathsf{P}_\mathsf{D}$ Power Dissipation in Still Air, SOIC Package 500 mW TSSOP Package 450 T<sub>stg</sub> Storage Temperature -65 to + 150 °C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

### **RECOMMENDED OPERATING CONDITIONS**

| Symbol                             | Parameter                                            |                                          |                  | Max                       | Unit |
|------------------------------------|------------------------------------------------------|------------------------------------------|------------------|---------------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                |                                          |                  | 6.0                       | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND) |                                          |                  | V <sub>CC</sub>           | V    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types             |                                          |                  | +125                      | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | (Figure 2) V <sub>CC</sub> = V <sub>CC</sub> =       | = 2.0 V<br>= 3.0 V<br>= 4.5 V<br>= 6.0 V | 0<br>0<br>0<br>0 | 1000<br>600<br>500<br>400 | ns   |

#### LATCH SELECTION TABLE

| Address Inputs |                | uts            |                                        |
|----------------|----------------|----------------|----------------------------------------|
| A <sub>2</sub> | A <sub>1</sub> | A <sub>0</sub> | Latch Addressed                        |
|                |                |                | Q0<br>Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6 |
| Н              | Н              | Н              | Q7                                     |

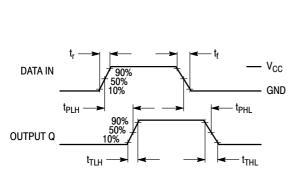
This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open.

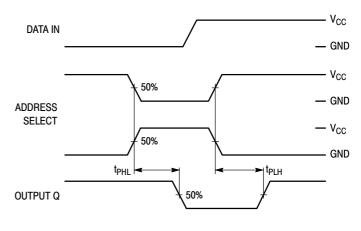
|                 |                                                   |                                                                                                                                                                                                                            |                          | Guaranteed Limit           |                            |                            |      |
|-----------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------|------|
| Symbol          | Parameter                                         | Test Conditions                                                                                                                                                                                                            | v <sub>cc</sub><br>v     | – 55 to<br>25°C            | ≤ <b>85°C</b>              | ≤ 125°C                    | Unit |
| V <sub>IH</sub> | Minimum High-Level Input<br>Voltage               | $\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ \left I_{out}\right   \leq  20 \; \mu\text{A} \end{array}$                                                                                         | 2.0<br>3.0<br>4.5<br>6.0 | 1.5<br>2.1<br>3.15<br>4.2  | 1.5<br>2.1<br>3.15<br>4.2  | 1.5<br>2.1<br>3.15<br>4.2  | V    |
| V <sub>IL</sub> | Maximum Low-Level Input<br>Voltage                | $\begin{array}{l} V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V} \\ \left I_{out}\right   \leq  20 \; \mu\text{A} \end{array}$                                                                                         | 2.0<br>3.0<br>4.5<br>6.0 | 0.5<br>0.9<br>1.35<br>1.80 | 0.5<br>0.9<br>1.35<br>1.80 | 0.5<br>0.9<br>1.35<br>1.80 | V    |
| V <sub>OH</sub> | Minimum High-Level Output<br>Voltage              |                                                                                                                                                                                                                            | 2.0<br>4.5<br>6.0        | 1.9<br>4.4<br>5.9          | 1.9<br>4.4<br>5.9          | 1.9<br>4.4<br>5.9          | V    |
|                 |                                                   | $\label{eq:Vin} \begin{array}{ll} V_{in} = V_{IH} \text{ or } V_{IL} & \left  I_{out} \right  \leq 2.4 \text{ mA} \\ \left  I_{out} \right  \leq 4.0 \text{ mA} \\ \left  I_{out} \right  \leq 5.2 \text{ mA} \end{array}$ | 3.0<br>4.5<br>6.0        | 2.48<br>3.98<br>5.48       | 2.34<br>3.84<br>5.34       | 2.20<br>3.70<br>5.20       |      |
| V <sub>OL</sub> | Maximum Low-Level Output<br>Voltage               | $V_{in} = V_{IH} \text{ or } V_{IL}$<br>$ I_{out}  \le 20 \ \mu A$                                                                                                                                                         | 2.0<br>4.5<br>6.0        | 0.1<br>0.1<br>0.1          | 0.1<br>0.1<br>0.1          | 0.1<br>0.1<br>0.1          | V    |
|                 |                                                   | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & \begin{array}{l}  I_{out}  \leq 2.4 \text{ mA} \\  I_{out}  \leq 4.0 \text{ mA} \\  I_{out}  \leq 5.2 \text{ mA} \end{aligned} $                                    | 3.0<br>4.5<br>6.0        | 0.26<br>0.26<br>0.26       | 0.33<br>0.33<br>0.33       | 0.40<br>0.40<br>0.40       |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                                                                                                   | 6.0                      | ± 0.1                      | ± 1.0                      | ± 1.0                      | μA   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC} \text{ or } GND$<br>$I_{out} = 0 \ \mu A$                                                                                                                                                                 | 6.0                      | 4                          | 40                         | 160                        | μA   |

### DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

| Symbol                                 |                                                                          |                          | Guaranteed Limit      |                       |                       |      |
|----------------------------------------|--------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|------|
|                                        | Parameter                                                                | V <sub>CC</sub><br>V     | - 55 to<br>25°C       | ≤ <b>85</b> °C        | ≤ 125°C               | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Data to Output<br>(Figures 2 and 7)           | 2.0<br>3.0<br>4.5<br>6.0 | 125<br>45<br>32<br>25 | 160<br>60<br>32<br>28 | 175<br>70<br>42<br>33 | ns   |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Address Select to Output<br>(Figures 3 and 7) | 2.0<br>3.0<br>4.5<br>6.0 | 150<br>60<br>32<br>28 | 175<br>70<br>40<br>30 | 200<br>80<br>45<br>35 | ns   |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation Delay, Enable to Output<br>(Figures 4 and 7)         | 2.0<br>3.0<br>4.5<br>6.0 | 150<br>60<br>32<br>28 | 175<br>70<br>40<br>30 | 200<br>80<br>45<br>35 | ns   |
| t <sub>PHL</sub>                       | Maximum Propagation Delay, Reset to Output<br>(Figures 5 and 7)          | 2.0<br>3.0<br>4.5<br>6.0 | 110<br>36<br>22<br>19 | 125<br>45<br>26<br>23 | 160<br>60<br>32<br>28 | ns   |
| t <sub>TLH</sub> ,<br>t <sub>THL</sub> | Maximum Output Transition Time, Any Output<br>(Figures 2 and 7)          | 2.0<br>3.0<br>4.5<br>6.0 | 75<br>27<br>15<br>13  | 95<br>32<br>19<br>16  | 110<br>36<br>22<br>19 | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                | _                        | 10                    | 10                    | 10                    | pF   |


### **AC ELECTRICAL CHARACTERISTICS** ( $C_L = 50 \text{ pF}$ , Input $t_r = t_f = 6 \text{ ns}$ )

|                 |                                             | Typical @ 25°C, V <sub>CC</sub> = 5.0 V |    |
|-----------------|---------------------------------------------|-----------------------------------------|----|
| C <sub>PD</sub> | Power Dissipation Capacitance (Per Package) | 30                                      | pF |


### **TIMING REQUIREMENTS** (Input $t_r = t_f = 6 \text{ ns}$ )

|                                 |                                                             |                          | Guaranteed Limit          |                           | mit                       |      |
|---------------------------------|-------------------------------------------------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Symbol                          | Parameter                                                   | V <sub>CC</sub><br>V     | - 55 to<br>25°C           | ≤ 85°C                    | ≤ 125°C                   | Unit |
| t <sub>su</sub>                 | Minimum Setup Time, Address or Data to Enable<br>(Figure 6) | 2.0<br>3.0<br>4.5<br>6.0 | 75<br>30<br>15<br>13      | 95<br>40<br>19<br>16      | 110<br>55<br>22<br>19     | ns   |
| t <sub>h</sub>                  | Minimum Hold Time, Enable to Address or Data<br>(Figure 6)  | 2.0<br>3.0<br>4.5<br>6.0 | 1<br>1<br>1               | 1<br>1<br>1               | 1<br>1<br>1               | ns   |
| t <sub>w</sub>                  | Minimum Pulse Width, Reset or Enable<br>(Figure 4 or 5)     | 2.0<br>3.0<br>4.5<br>6.0 | 70<br>27<br>15<br>13      | 90<br>32<br>19<br>16      | 100<br>36<br>22<br>19     | ns   |
| t <sub>r</sub> , t <sub>f</sub> | Maximum Input Rise and Fall Times<br>(Figure 2)             | 2.0<br>3.0<br>4.5<br>6.0 | 1000<br>800<br>500<br>400 | 1000<br>800<br>500<br>400 | 1000<br>800<br>500<br>400 | ns   |

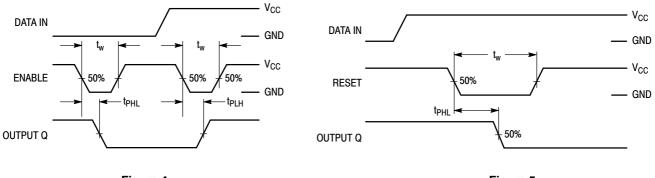
### SWITCHING WAVEFORMS











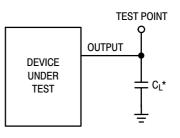
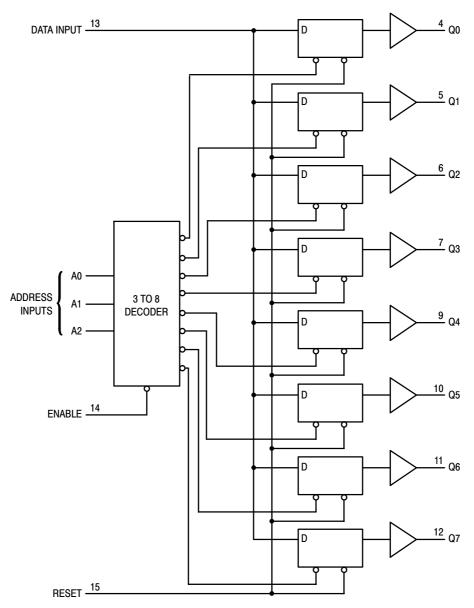
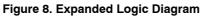



Figure 4.





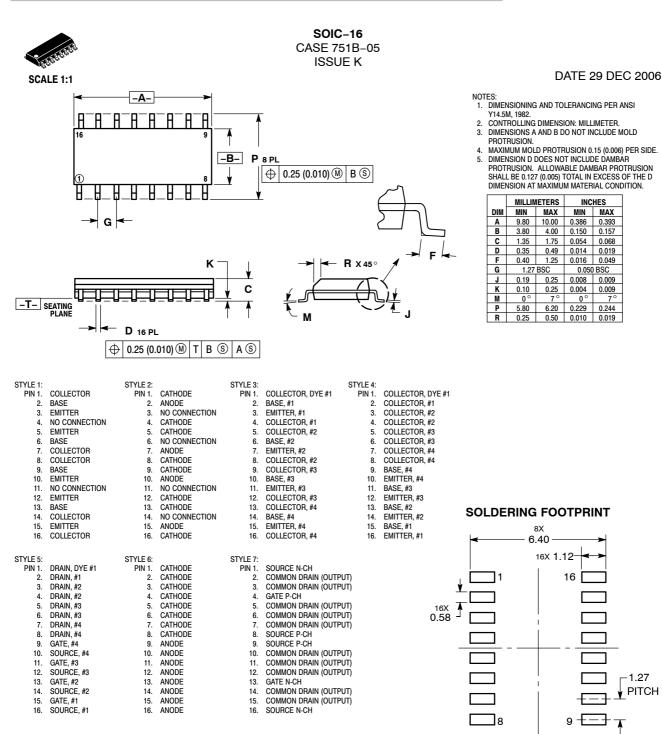

\*Includes all probe and jig capacitance

Figure 7. Test Circuit

Figure 6.





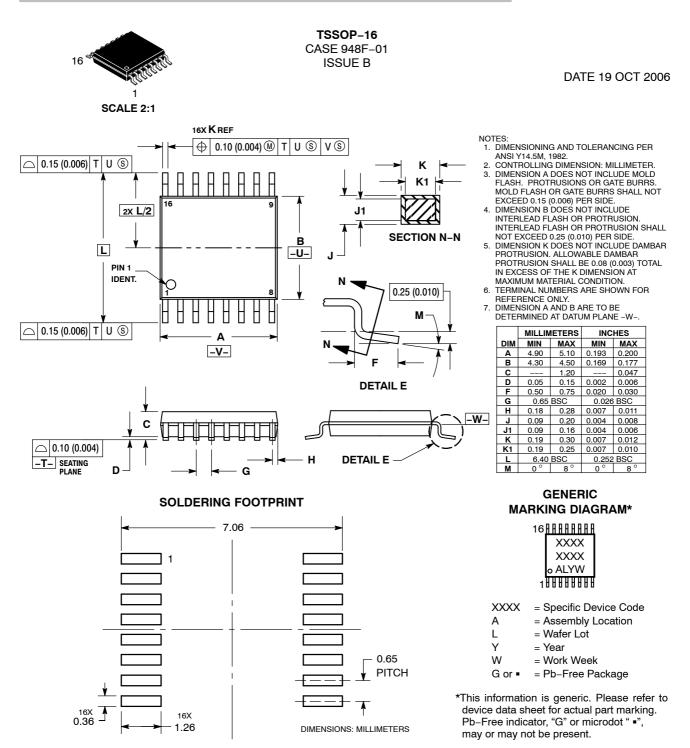

#### ORDERING INFORMATION

| Device          | Package               | Shipping <sup>†</sup> |
|-----------------|-----------------------|-----------------------|
| MC74HC259ADG    | SOIC-16<br>(Pb-Free)  | 48 Units / Rail       |
| MC74HC259ADR2G  | SOIC-16<br>(Pb-Free)  | 2500 / Tape & Reel    |
| MC74HC259ADTR2G | TSSOP-16<br>(Pb-Free) | 2500 / Tape & Reel    |
| MC74HC259ADTG   | TSSOP-16<br>(Pb-Free) | 96 Units / Rail       |
| NLVHC259ADR2G*  | SOIC-16<br>(Pb-Free)  | 2500 / Tape & Reel    |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

\*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable






DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                        | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                            | SOIC-16     | PAGE 1                                                                                                                                                                            |  |  |  |
| ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding |             |                                                                                                                                                                                   |  |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





| DOCUMENT NUMBER:                                                                                                                                                                                                                                                                                                                                          | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| DESCRIPTION:                                                                                                                                                                                                                                                                                                                                              | TSSOP-16    |                                                                                                                                                                                  | PAGE 1 OF 1 |  |  |
| ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.<br>ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding |             |                                                                                                                                                                                  |             |  |  |

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, OnSemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters, including "Typicals" must be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

### Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

### **TECHNICAL SUPPORT**

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers & Demultiplexers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210 5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ) 74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8 SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D.652