MC74HC377A

Octal D Flip-Flop with Common Clock and Enable

High-Performance Silicon-Gate CMOS

The MC74HC377A is identical in pinout to the LS273. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

This device consists of eight D flip-flops with common Clock and Enable ($\overline{\mathrm{E}}$) inputs. Each flip-flop is loaded with a low-to-high transition of the Clock input. Enable $(\overline{\mathrm{E}})$ is active low.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 264 FETs or 66 Equivalent Gates
- These are Pb -Free Devices

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAMS

A = Assembly Location
WL, L = Wafer Lot
YY, Y = Year
WW, $W=$ Work Week
G $\quad=$ Pb-Free Package

- $\quad=\mathrm{Pb}-$ Free Package
(Note: Microdot may be in either location)

PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Figure 1. Logic Diagram

FUNCTION TABLE

Operating Modes	Inputs			Outputs
	Clock	E	Dn	Qn
Load "1"	\uparrow	I	h	H
Load "0"	\uparrow	I	I	L
Hold (Do Nothing)	\uparrow X	h H	X	No Change No Change

H = HIGH voltage level
$h=$ HIGH voltage level one setup time prior to the LOW-toHIGH CP transition
L = LOW voltage level
I = LOW voltage level one setup time prior to the LOW-to-HIGH
CP transition
$\uparrow=$ LOW-to-HIGH CP transition
X = Don't Care

Design Criteria	Value	Units
Internal Gate Count*	66	ea
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	$\mu \mathrm{~W}$
Speed Power Product	.0075	pJ

*Equivalent to a two-input NAND gate.

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC377ADWG	SOIC-20 WIDE (Pb-Free)	38 Units / Rail
MC74HC377ADWR2G	SOIC-20 WIDE (Pb-Free)	1000 Tape \& Reel
MC74HC377ADTG	TSSOP-20*	75 Units / Rail
MC74HC377ADTR2G	TSSOP-20*	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently $\mathrm{Pb}-$ Free.

MC74HC377A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still AirSOIC Package		
		500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Package ${ }^{\dagger}$	450	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range GND $\leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{Cc}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 500 \\ 400 \end{gathered}$	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions		$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit	
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$			
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|l_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
		$V_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \left\|\left.\right\|_{\text {out }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & \hline 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }}$	$\begin{aligned} & \left\|\left.\right\|_{\text {out }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND		6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$		6.0	4.0	40	160	$\mu \mathrm{A}$	

AC Electrical Characteristics $\left(C_{L}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	Test Conditions	V_{cc} (V)	Guaranteed Limits			Unit
				$\begin{array}{\|c} -55^{\circ} \mathrm{C} \text { to } \\ 25^{\circ} \end{array}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Clock to Qn	Figures 2, 4	2.0	160	200	240	ns
			4.5	32	40	48	
			6.0	27	34	41	
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Maximum Output Transition Time	Figures 2, 4	2.0	75	95	110	ns
			4.5	15	19	22	
			6.0	13	16	19	
tw	Minimum Clock Pulse Width High or Low	Figure 2	2.0	80	100	120	ns
			4.5	16	20	24	
			6.0	4	17	20	
$\mathrm{t}_{\text {su }}$	Minimum Set-up Time D_{n} to Clock	Figure 3	2.0	60	75	90	ns
			4.5	12	15	18	
			6.0	10	13	15	
$\mathrm{t}_{\text {su }}$	Minimum Set-up Time Enable to Clock	Figure 3	2.0	60	75	90	ns
			4.5	12	15	18	
			6.0	10	13	15	
$t_{\text {h }}$	Minimum Hold Time D_{n} to Clock	Figure 3	2.0	3	3	3	ns
			4.5	3	3	3	
			6.0	3	3	3	
$t_{\text {h }}$	Minimum Hold Time Enable to Clock	Figure 3	2.0	4	4	4	ns
			4.5	4	4	4	
			6.0	4	4	4	
$\mathrm{f}_{\text {max }}$	Maximum Clock Pulse Frequency (50\% duty cycle)	Figures 2, 4	2.0	6	5	4	ns
			4.5	30	24	20	
			6.0	35	28	24	
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance		-	10	10	10	pF

$\mathrm{C}_{\text {PD }}$ (Note 1)	Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	pF	
	Power Dissipation Capacitance	35	

1. $C_{P D}$ is defined as the value of the IC's equivalent capacitance from which the operating current can be calculated from: $\mathrm{I}_{\mathrm{CC}}($ operating $) \approx \mathrm{C}_{P D} \times V_{C C} \times f_{I N} \times N_{S W}$ where $N_{S W}=$ total number of outputs switching and $f_{I N}=$ switching frequency.

MC74HC377A

SWITCHING WAVEFORMS

Figure 3.

Figure 2.

Figure 5. Expanded Logic Diagram

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D, 118 74VHCT9273FT(BJ) MM74HC374WM MM74HC74AMX 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D. 652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D. 652

