MC74HC390A

Dual 4-Stage Binary Ripple Counter with $\div 2$ and $\div 5$ Sections

High-Performance Silicon-Gate CMOS

The MC74HC390A is identical in pinout to the LS390. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs

This device consists of two independent 4-bit counters, each composed of a divide-by-two and a divide-by-five section. The divide-by-two and divide-by-five counters have separate clock inputs, and can be cascaded to implement various combinations of $\div 2$ and/or $\div 5$ up to a $\div 100$ counter.

Flip-flops internal to the counters are triggered by high-to-low transitions of the clock input. A separate, asynchronous reset is provided for each 4-bit counter. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used as clocks or strobes except when gated with the Clock of the HC390A.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No 7 A
- Chip Complexity: 244 FETs or 61 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring

Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

PIN $16=V_{C C}$ PIN 8 = GND

Figure 1. Logic Diagram

MARKING DIAGRAMS

SOIC-16

TSSOP-16
A = Assembly Location
L, WL = Wafer Lot
Y, YY = Year
W, WW = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)
FUNCTION TABLE

Clock		Reset	Action
A	B	Res	H
X	X	Reset $\div 2$ and $\div 5$	
L	X	L	Increment $\div 2$
X	L	L	Increment $\div 5$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet

MC74HC390A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air,SOIC Package \dagger TSSOP Packaget	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds		
SOIC or TSSOP Package			

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating: SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V
T_{A}	Operating Temperature, All Package Types		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1000 \\ & 600 \\ & 500 \\ & 400 \end{aligned}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit	
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{array}{\|l} \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {lout }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left\|\left.\right\|_{\text {out }} \leq 2.4 \mathrm{~mA}\right. \\ & \left.\right\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \left.\right\|_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left.\right\|^{\\|_{\text {out }}} \leq 2.4 \mathrm{~mA} \\ & \left.\right\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \left.\right\|_{\text {out }} \leq 5.2 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$		

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) (continued)

	Parameter	Test Conditions	$\underset{\mathrm{Vcc}}{\mathrm{~V}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
Symbol				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\left.\mathrm{t}_{\mathrm{f}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}\right)$

Symbol	Parameter	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \\ & 30 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 9 \\ 14 \\ 28 \\ 45 \end{gathered}$	$\begin{gathered} \hline 8 \\ 12 \\ 25 \\ 40 \end{gathered}$	MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock A to QA (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 24 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 45 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 36 \\ & 31 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}},$ $\mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, Clock A to QC (QA connected to Clock B) (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 200 \\ 160 \\ 58 \\ 49 \end{gathered}$	$\begin{aligned} & 250 \\ & 185 \\ & 65 \\ & 62 \end{aligned}$	$\begin{gathered} 300 \\ 210 \\ 70 \\ 68 \end{gathered}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, Clock B to QB (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 33 \\ & 28 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 39 \\ & 33 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Clock B to QC (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 90 \\ & 56 \\ & 37 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 70 \\ & 46 \\ & 39 \\ & \hline \end{aligned}$	$\begin{gathered} 180 \\ 100 \\ 56 \\ 48 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{tpLH}^{\prime}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Clock B to QD (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 40 \\ & 26 \\ & 22 \end{aligned}$	$\begin{aligned} & 80 \\ & 45 \\ & 33 \\ & 28 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 39 \\ & 33 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Reset to any Q (Figures 2 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 80 \\ & 48 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 95 \\ & 65 \\ & 38 \\ & 33 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 110 \\ & 75 \\ & 44 \\ & 39 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Counter) ${ }^{\star}$	35	pF

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

TIMING REQUIREMENTS (Input $t_{r}=t_{f}=6 \mathrm{~ns}$)

	Parameter	V_{cc} V	Guaranteed Limit			Unit
Symbol			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Clock A or Clock B (Figure 3)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 25 \\ 15 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 30 \\ & 20 \\ & 13 \\ & 11 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock A, Clock B (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 15 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 24 \\ & 22 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 30 \\ 28 \end{gathered}$	ns
$\mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

PIN DESCRIPTIONS

INPUTS

Clock A (Pins 1, 15) and Clock B (Pins 4, 15)

Clock A is the clock input to the $\div 2$ counter; Clock B is the clock input to the $\div 5$ counter. The internal flip-flops are toggled by high-to-low transitions of the clock input.

CONTROL INPUTS

Reset (Pins 2, 14)

Asynchronous reset. A high at the Reset input prevents counting, resets the internal flip-flops, and forces Q_{A} through Q_{D} low.

OUTPUTS
Q_{A} (Pins 3, 13)
Output of the $\div 2$ counter.

Q_{B}, Q_{C}, Q_{D} (Pins 5, 6, 7, 9, 10, 11)

Outputs of the $\div 5$ counter. Q_{D} is the most significant bit. Q_{A} is the least significant bit when the counter is connected for BCD output as in Figure 5. Q_{B} is the least significant bit when the counter is operating in the bi-quinary mode as in Figure 6.

SWITCHING WAVEFORMS

Figure 2.

Figure 3.

MC74HC390A

TEST CIRCUIT

*Includes all probe and jig capacitance
Figure 4.

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM (\mathbf{Q}_{A} Connected to Clock B)

RESET \qquad

$Q_{D}{ }^{-}$

MC74HC390A

APPLICATIONS INFORMATION

Each half of the MC54/74HC390A has independent $\div 2$ and $\div 5$ sections (except for the Reset function). The $\div 2$ and $\div 5$ counters can be connected to give BCD or bi-quinary (2-5) count sequences. If Output Q_{A} is connected to the Clock B input (Figure 4), a decade divider with BCD output is obtained. The function table for the BCD count sequence is given in Table 1.

Table 1. BCD Count Sequence*

Count	Output			
	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q}_{\mathbf{A}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
5	L	H	L	H
6	L	H	H	L
7	L	H	H	H
8	H	L	L	L
9	H	L	L	H

To obtain a bi-quinary count sequence, the input signals connected to the Clock B input, and output Q_{D} is connected to the Clock A input (Figure 6). Q_{A} provides a 50% duty cycle output. The bi-quinary count sequence function table is given in Table 2.

Table 2. Bi-Quinary Count Sequence**

Count	Output			
	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{D}}$	$\mathbf{Q}_{\mathbf{C}}$	$\mathbf{Q}_{\mathbf{B}}$
0	L	L	L	L
1	L	L	L	H
2	L	L	H	L
3	L	L	H	H
4	L	H	L	L
8	H	L	L	L
9	H	L	L	H
10	H	L	H	L
11	H	L	H	H
12	H	H	L	L

${ }^{* *} Q_{D}$ connected to Clock A input.

CONNECTION DIAGRAMS

Figure 5. BCD Count

Figure 6. Bi-Quinary Count

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC390ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC390ADR2G	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel
MC74HC390ADTR2G	TSSOP-16 (Pb-Free)	$2500 /$ Tape \& Reel
NLV74HC390ADR2G*	SOIC-16 (Pb-Free)	$2500 /$ Tape \& Reel

[^0]SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D,118
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11 74HC164T14-13
STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653 74VHC4020FT(BJ)
74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT.653 74VHC164FT(BE)
74HCT594DB. 112 74HCT597DB. 112 74LV164D. 112 74LV165D. 112 74LV4094D. 112 74LV4094PW. 112 CD74HC165M 74AHC594T16-
13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13 74HC594S16-13

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

