MC74HCT365A

Hex 3-State Noninverting
 Buffer with Common
 Enables and LSTTL Compatible Inputs
 High-Performance Silicon-Gate CMOS

The MC74HCT365A is identical in pinout to the LS365. The device inputs are compatible with LSTTL outputs.

This device is a high-speed hex buffer with 3-state outputs and two common active-low Output Enables. When either of the enables is high, the buffer outputs are placed into high-impedance states. The HCT365A has noninverting outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 90 FETs or 22.5 Equivalent Gates
- These are $\mathrm{Pb}-$ Free Devices*

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
MARKING DIAGRAMS

A = Assembly Location
WL, L = Wafer Lot
Y = Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)
htp://onsemi.com
(Note: Microdot may be in either location)

[^0]
MC74HCT365A

OUTPUT ENABLE 1	$1 \bullet$	16	7 V c
AOL	2	15	OUTPUT ENABLE2
Y0 [3	14	A5
A1	4	13	Y5
Y1	5	12	A4
A2	6	11	Y4
Y2	7	10	A3
GND	8	9	Y3

Figure 1. Pin Assignment

FUNCTION TABLE

Inputs			Output
Enable	Enable		
$\mathbf{1}$	$\mathbf{2}$	A	\mathbf{Y}
L	L	L	L
L	L	H	H
H	X	X	Z
X	H	X	Z

X = don't care
$Z=$ high impedance

Figure 2. Logic Diagram

ORDERING INFORMATION

Device	Package	Shipping †
MC74HCT365ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT365ADR2G	SOIC-16 (Pb-Free)	2500 Units / Reel
MC74HCT365ADTG	TSSOP-16* (Pb-Free)	96 Units / Rail
MC74HCT365ADTR2G	TSSOP-16* (Pb-Free)	2500 Units / Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently $\mathrm{Pb}-\mathrm{Free}$.

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air,	SOIC Package \dagger	500
TSSOP Package \dagger	450	mW	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time (Figure 1)	0	500	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{Cc}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85{ }^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left\|l_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	2.0	2.0	2.0	V
VIL	Maximum Low-Level Input Voltage	$\begin{aligned} & V_{\text {out }}=0.1 \mathrm{~V} \\ & \left\|\left.\right\|_{\text {out }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	0.8	0.8	0.8	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{array}{\|l} \hline V_{\text {in }}=V_{\text {IH }} \\ \left\|\left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A}\right. \end{array}$	4.5	4.4	4.4	4.4	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \quad\| \|_{\text {out }} \mid \leq 6.0 \mathrm{~mA}$	4.5	3.98	3.84	3.70	
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{array}$	4.5	0.1	0.1	0.1	V
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IL }} \quad\left\|l_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	0.26	0.33	0.40	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	4.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
loz	Maximum Three-State Leakage Current	Output in High-Impedance State $\begin{aligned} & V_{\text {in }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & V_{\text {out }}=V_{C C} \text { or } G N D \end{aligned}$	4.5	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	4.5	4	40	160	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Additional Quiescent Supply Current	$\mathrm{V}_{\mathrm{in}}=2.4 \mathrm{~V}$, Any One Input $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ or GND , Other Inputs $\mathrm{I}_{\text {out }}=0 \mu \mathrm{~A}$	5.5	$\geq-55^{\circ} \mathrm{C}$	25 to $125^{\circ} \mathrm{C}$		mA
				2.9	2.4		

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathbf{V} \end{aligned}$	Guaranteed Limit			Unit
			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{LLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	4.5	24	30	36	ns
$\begin{aligned} & \text { tpLZ, } \\ & \text { tpHZ } \end{aligned}$	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	4.5	44	55	66	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Maximum Propagation Delay, Output Enable to Output Y (Figures 2 and 4)	4.5	44	55	66	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}}, \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	4.5	12	15	18	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF

$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Buffer)*	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	pF
		60	

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

MC74HCT365A

SWITCHING WAVEFORMS

$\left(\mathrm{V}_{\mathrm{I}}=0\right.$ to $\left.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=1.3 \mathrm{~V}\right)$

Figure 1.

Figure 2.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 3.

*Includes all probe and jig capacitance
Figure 4.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

