MC74HCT595A

8-Bit Serial-Input/Serial or Parallel-Output Shift Register with Latched 3-State Outputs and LSTTL Compatible Inputs

High-Performance Silicon-Gate CMOS

The MC74HCT595A consists of an 8-bit shift register and an 8-bit D-type latch with three-state parallel outputs. The shift register accepts serial data and provides a serial output. The shift register also provides parallel data to the 8 -bit latch. The shift register and latch have independent clock inputs. This device also has an asynchronous reset for the shift register.

The HCT595A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs. The device inputs are compatible with standard CMOS or LSTTL outputs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 328 FETs or 82 Equivalent Gates
- Improvements over HC595 / HCT595
- Improved Propagation Delays
- 50% Lower Quiescent Power
- Improved Input Noise and Latchup Immunity
- $\mathrm{Pb}-$ Free Packages are Available*

[^0]

ORDERING INFORMATION

Device	Package	Shipping †
MC74HCT595ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HCT595ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74HCT595ADTG	TSSOP-16*	96 Units / Rail
MC74HCT595ADTR2G	TSSOP-16* (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*This package is inherently Pb -Free.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{Cc}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$1{ }_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 35	mA
ICC	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, Package \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
\dagger Derating - SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time (Figure 1)	0	500	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Guaranteed Limit			Unit	
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	2.0	2.0	2.0	V	
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid l_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4.5 \\ \text { to } \\ 5.5 \end{gathered}$	0.8	0.8	0.8	V	
V_{OH}	Minimum High-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad\left\|l_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	$\begin{aligned} & \mathrm{V}_{\text {in }} \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid l_{\text {out }} \leq 20 \end{aligned}$	4.5	0.1	0.1	0.1	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad\left\|\mathrm{l}_{\text {out }}\right\| \leq 6.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4		
V_{OH}	Minimum High-Level Output Voltage, SQ $_{\mathrm{H}}$	$\begin{aligned} & V_{\text {in }} \mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.4	4.4	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{Il}_{\text {out }} \mathrm{I} \leq 4.0 \mathrm{~mA}$	4.5	3.98	3.84	3.7		
V_{OL}	Maximum Low-Level Output Voltage, SQ $_{H}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	4.5	0.1	0.1	0.1	V	
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} \quad \mathrm{Il}_{\text {out }} \leq 4.0 \mathrm{~mA}$	4.5	0.26	0.33	0.4		
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cC }}$ or GND	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$	
loz	Maximum Three-State Leakage Current, $Q_{A}-Q_{H}$	Output in High-Impedance State $\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $V_{\text {out }}=V_{\text {CC }}$ or GND	5.5	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$	
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & V_{\text {in }}=V_{C C} \text { or GND } \\ & I_{\text {out }}=0 \mu A \end{aligned}$	5.5	4.0	40	160	$\mu \mathrm{A}$	

$\Delta_{\text {CC }}$	Additional Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V}, \text { Any One Input } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \text { Other Inputs } \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	5.5	$\geq-55^{\circ} \mathrm{C}$	25 to $125^{\circ} \mathrm{C}$	mA
				2.9	2.4	

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, $\left.\operatorname{Input} \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 8^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	30	24	20	MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, Shift Clock to SQ_{H} (Figures 1 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
${ }_{\text {tPHL }}$	Maximum Propagation Delay, Reset to SQ_{H} (Figures 2 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	29	36	44	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Maximum Propagation Delay, Latch Clock to $Q_{A}-Q_{H}$ (Figures 3 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	28	35	42	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	30	38	45	ns
$\begin{aligned} & \text { tpzL, } \\ & \text { tpZH } \\ & \hline \end{aligned}$	Maximum Propagation Delay, Output Enable to $Q_{A}-Q_{H}$ (Figures 4 and 8)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	27	34	41	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{THL}} \\ & \hline \end{aligned}$	Maximum Output Transition Time, $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$ (Figures 3 and 7)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	12	15	18	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{LH},}, \\ & \mathrm{t}_{\mathrm{TH} \mathrm{HL}} \end{aligned}$	Maximum Output Transition Time, SQ $_{H}$ (Figures 1 and 7)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance (Output in High-Impedance State), $\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}$	-	15	15	15	pF

		Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Per Package)*	300	pF

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2}+I_{C C} V_{C C}$.
TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	v_{cc}	Guaranteed Limit			Unit
			$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial Data Input A to Shift Clock (Figure 5)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Shift Clock to Latch Clock (Figure 6)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	15	19	22	ns
$t_{\text {h }}$	Minimum Hold Time, Shift Clock to Serial Data Input A (Figure 5)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	5.0	5.0	5.0	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Reset Inactive to Shift Clock (Figure 2)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset (Figure 2)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	12	15	18	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Shift Clock (Figure 1)	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Latch Clock (Figure 6)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	10	13	15	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	500	500	500	ns

FUNCTION TABLE

Operation	Inputs					Resulting Function			
	Reset	Serial Input A	Shift Clock	Latch Clock	Output Enable	Shift Register Contents	Latch Contents	Serial Output S_{H}	Parallel Outputs $Q_{A}-Q_{H}$
Reset shift register	L	X	X	L, H, \downarrow	L	L	U	L	U
Shift data into shift register	H	D	\uparrow	L, H, \downarrow	L	$\begin{gathered} \mathrm{D} \rightarrow \mathrm{SR}_{\mathrm{A}} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	U	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$	U
Shift register remains unchanged	H	X	L, H, \downarrow	L, H, \downarrow	L	U	U	U	U
Transfer shift register contents to latch register	H	X	L, H, \downarrow	\uparrow	L	U	$\mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{LR}_{\mathrm{N}}$	U	SR_{N}
Latch register remains unchanged	X	X	X	L, H, \downarrow	L	*	U	*	U
Enable parallel outputs	X	X	X	X	L	*	**	*	Enabled
Force outputs into high impedance state	X	X	X	X	H	*	**	*	Z
SR = shift register conte LR = latch register conte	$D=$ data (L, H) logic level $\mathrm{U}=$ remains unchanged				$\begin{array}{ll} \uparrow=\text { Low-to-High } & * \\ \downarrow=\text { High-to-Low } & * * \end{array}$		* = depends on Reset and Shift Clock inputs ** $=$ depends on Latch Clock input		

PIN DESCRIPTIONS

INPUTS

A (Pin 14)

Serial Data Input. The data on this pin is shifted into the 8-bit serial shift register.

CONTROL INPUTS

Shift Clock (Pin 11)

Shift Register Clock Input. A low- to-high transition on this input causes the data at the Serial Input pin to be shifted into the 8 -bit shift register.

Reset (Pin 10)

Active-low, Asynchronous, Shift Register Reset Input. A low on this pin resets the shift register portion of this device only. The 8-bit latch is not affected.

Latch Clock (Pin 12)

Storage Latch Clock Input. A low-to-high transition on this input latches the shift register data.

Output Enable (Pin 13)

Active-low Output Enable. A low on this input allows the data from the latches to be presented at the outputs. A high on this input forces the outputs $\left(\mathrm{Q}_{\mathrm{A}}-\mathrm{Q}_{\mathrm{H}}\right)$ into the high-impedance state. The serial output is not affected by this control unit.

OUTPUTS

$Q_{A}-Q_{H}($ Pins 15, 1, 2, 3, 4, 5, 6, 7)
Noninverted, 3-state, latch outputs.

$\mathbf{S Q}_{\mathrm{H}}(\operatorname{Pin} 9)$

Noninverted, Serial Data Output. This is the output of the eighth stage of the 8 -bit shift register. This output does not have three-state capability.

MC74HCT595A

SWITCHING WAVEFORMS

$$
\left(\mathrm{V}_{\mathrm{I}}=0 \text { to } 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=1.3 \mathrm{~V}\right)
$$

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

TEST CIRCUITS

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

SCALE 1:1

STYLE 1:	
PIN 1.	COLLECTOR
2.	BASE
3.	EMITTER
4.	NO CONNECTION
5.	EMITTER
6.	BASE
7.	COLLECTOR
8.	COLLECTOR
9.	BASE
10.	EMITTER
11.	NO CONNECTION
12.	EMITTER
13.	BASE
14.	COLLECTOR
15.	EMITTER
16.	COLLECTOR

STYLE 2:	
PIN 1.	CATHODE
2.	ANODE
3.	NO CONNECTION
4.	CATHODE
5.	CATHODE
6.	NO CONNECTION
7.	ANODE
8.	CATHODE
9.	CATHODE
10.	ANODE
11.	NO CONNECTION
12.	CATHODE
13.	CATHODE
14.	NO CONNECTION
15.	ANODE
16.	CATHODE

STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE, \#1	2.	COLLECTOR, \#1
3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE, \#2	6.	COLLECTOR, \#3
7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	COLLECTOR, \#3	9.	BASE, \#4
10.	BASE, \#3	10.	EMITTER, \#4
11.	EMITTER, \#3	11.	BASE, \#3
12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	COLLECTOR, \#4	13.	BASE, \#2
14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR, \#4	16.	EMITTER, \#1

SOLDERING FOOTPRINT
15.
16. CATHODE STYLE 5:
PIN 1. DRAIN, DYE \#1
STYLE 6:
PIN 1. CATHODE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, +2
5. DRAIN, \#3
6. DRAIN, \#3
7. DRAIN, \#4

CATHODE

- 8. CATHODE

10. SOURCE, \#4
$\begin{array}{lll}\text { 10. } & \text { SOURCE, \#4 } & \text { 10. ANODE } \\ \text { 11. GATE, \#3 } & \text { 11. ANODE } & \text { 10. COMMON DRAIN (OUTPUT) }\end{array}$
. ANODE
STYLE 7:
PIN 1. SOURCE N-CH
11. COMMON DRAIN (OUTPUT)
12. COMMON DRAIN (OUTPUT)
13. GATE P-CH
14. COMMON DRAIN (OUTPUT)
15. COMMON DRAIN (OUTPUT)
16. COMMON DRAIN (OUTPUT)
17. COMMON DRAIN (OUTPUT)
18. SOURCE, \#3 12. ANODE 12. COMMON DRAIN (OUTPUT)
$\begin{array}{lll}\text { 13. } \text { GATE, \#2 } & \text { 13. ANODE } & \text { 13. GATE N-CH } \\ \text { 14. SOURCE, \#2 } & \text { 14. ANODE } & \text { 14. COMMON DRAIN (OUTPUT) }\end{array}$
$\begin{array}{lll}\text { 14. SOURCE, \#2 } & \text { 14. ANODE } & \text { 14. COMMON DRAIN (OUTPUT) } \\ \text { 15. GATE, } \# 1 & \text { 15. ANODE } & \text { 15. COMMON DRAIN (OUTPUT) }\end{array}$
19. SOURCE, \#1
20. ANODE
21. SOURCE N-CH

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	
G	1.27		0.049	
J	0.19	0.25	0.050	
K	0.10	0.25	0.009	
M	0.0	0.004	0.009	
P	5.80	6.20	0.229	7°
R	0.25	0.50	0.244	

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

[^1]

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006
SCALE 2:1

NOTES

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	4.90	5.10	0.193	0.200		
B	4.30	4.50	0.169	0.177		
C	---	1.20	---	0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65		BSC	0.026		BSC
H	0.18	0.28	0.007	0.011		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007			
L	6.40		BSC	0.010		
M	0		0.252	8°		

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
Gor v	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^2]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D,118
TPIC6C595PWG4 74VHC164MTCX CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11 74HC164T14-13
STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653 74VHC4020FT(BJ)
74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT.653 74VHC164FT(BE)
74HCT594DB. 112 74HCT597DB. 112 74LV164D. 112 74LV165D. 112 74LV4094D. 112 74LV4094PW. 112 CD74HC165M 74AHC594T16-
13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13 74HC594S16-13

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^2]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

