Low-Voltage CMOS Octal **Buffer Flow Through Pinout**

With 5 V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

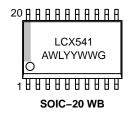
The MC74LCX541 is a high performance, non-inverting octal buffer operating from a 2.3 to 3.6 V supply. This device is similar in function to the MC74LCX244, while providing flow through architecture. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX541 inputs to be safely driven from 5 V devices. The MC74LCX541 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

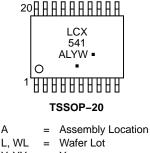
Current drive capability is 24 mA at the outputs. The Output Enable $(\overline{OE1}, \overline{OE2})$ inputs, when HIGH, disables the output by placing them in a HIGH Z condition.

Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0$ V
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - ♦ Human Body Model > 2000 V
 - ◆ Machine Model > 200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

ON Semiconductor®


http://onsemi.com

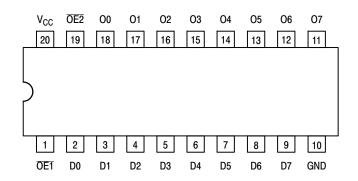


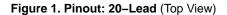
DW SUFFIX CASE 751D

DT SUFFIX CASE 948E

MARKING DIAGRAMS

Y, YY Year Work Week W, WW =


А


G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN NAMES

Pins	Function
OEn	Output Enable Inputs
Dn	Data Inputs
On	3–State Outputs

TRUTH TABLE

	Inputs		Outputs
OE1	OE2	Dn	On
L	L	L	L
L	L	н	Н
Х	н	Х	Z
Н	Х	Х	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable, for I_{CC} reasons, DO NOT FLOAT Inputs

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	(Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Output in HIGH or LOW State. I_O absolute maximum rating must be observed.

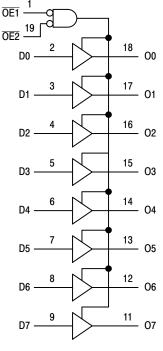


Figure 2. Logic Diagram

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current, V_{CC} = 3.0 V – 3.6 V			-24	mA
I _{OL}	LOW Level Output Current, V_{CC} = 3.0 V – 3.6 V			24	mA
I _{OH}	HIGH Level Output Current, $V_{CC} = 2.7 V - 3.0 V$			-12	mA
I _{OL}	LOW Level Output Current, V_{CC} = 2.7 V – 3.0 V			12	mA
T _A	Operating Free-Air Temperature	-40		+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

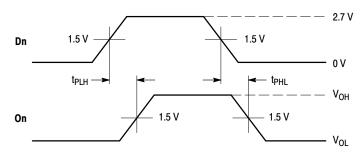
			T _A = −40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Мах	Units
VIH	HIGH Level Input Voltage (Note 2)	$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2)	$2.7 \text{ V} \le \text{V}_{\text{CC}} \le 3.6 \text{ V}$		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7 \text{ V} \le \text{V}_{CC} \le 3.6 \text{ V}; \text{ I}_{OH} = -100 \mu\text{A}$	V _{CC} – 0.2		V
		V _{CC} = 2.7 V; I _{OH} = -12 mA	2.2		
		V _{CC} = 3.0 V; I _{OH} = -18 mA	2.4		
		V _{CC} = 3.0 V; I _{OH} = -24 mA	2.2		
V _{OL}	LOW Level Output Voltage	$2.7 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OZ}	3-State Output Current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \; V, \; V_{IN} = V_{IH} \; or \; V_{IL}, \\ V_{OUT} = 0 \; to \; 5.5 \; V \end{array}$		±5	μΑ
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \le V_{CC} \le 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. These values of V_I are used to test DC electrical characteristics only.

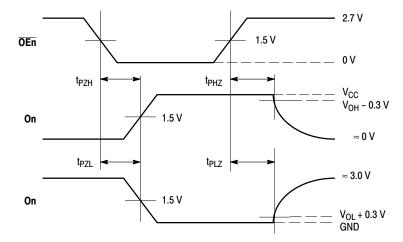
AC ELECTRICAL CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}; C_L = 50 \text{ pF}; R_L = 500 \Omega$)

				Limits		
			T _A	= -40°C to +	85°C	
			V _{CC} = 3.0	V to 3.6 V	V _{CC} = 2.7 V	
Symbol	Parameter	Waveform	Min	Max	Max	Units
t _{PLH} t _{PHL}	Propagation Delay Input to Output	1	1.5 1.5	6.5 6.5	7.5 7.5	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	9.5 9.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	7.5 7.5	8.5 8.5	ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0		ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

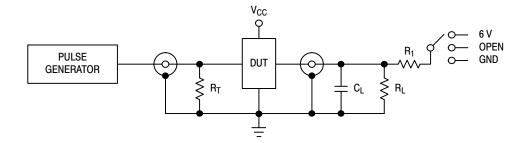

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V


4. Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF



WAVEFORM 1 - PROPAGATION DELAYS $t_{R} = t_{F} = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_{W} = 500$ ns

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES t_{R} = t_{F} = 2.5 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns

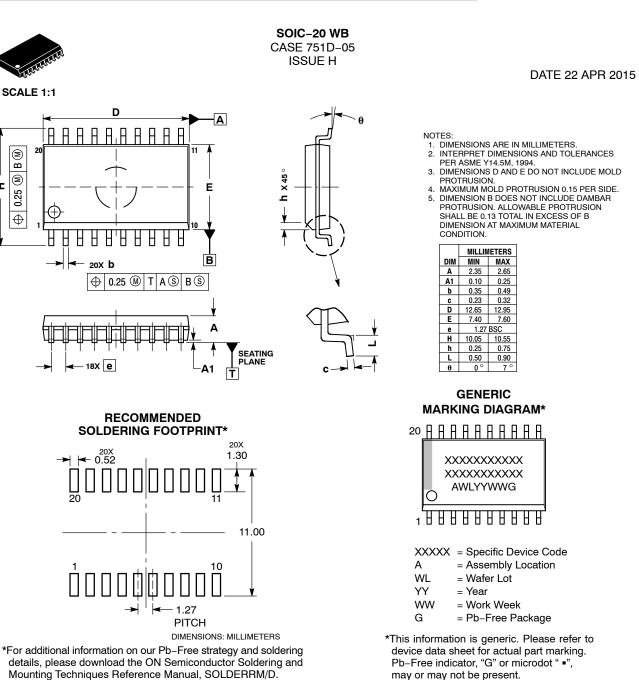
Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V
Open Collector/Drain $t_{\mbox{PLH}}$ and $t_{\mbox{PHL}}$	6 V
^t PZH, ^t PHZ	GND

 C_L = 50 pF or equivalent (Includes jig and probe capacitance)

 $R_L = R_1 = 500 \ \Omega \text{ or equivalent}$ $R_T = Z_{OUT} \text{ of pulse generator (typically 50 \ \Omega)}$

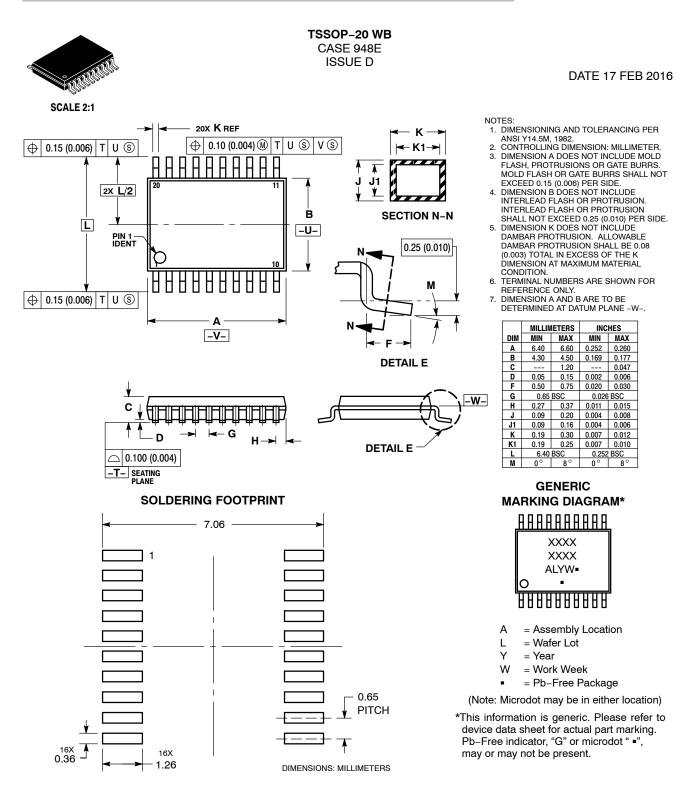
Figure 4. Test Circuit

ORDERING INFORMATION


Device	Package	Shipping [†]
MC74LCX541DWR2G	SOIC-20 (Pb-Free)	1000 Tape & Reel
NLV74LCX541DWR2G* (In Development)	SOIC-20 (Pb-Free)	1000 Tape & Reel
MC74LCX541DWG	SOIC-20 (Pb-Free)	38 Units / Rail
NLV74LCX541DWG* (In Development)	SOIC-20 (Pb-Free)	38 Units / Rail
MC74LCX541DTG	TSSOP-20 (Pb-Free)	75 Units / Rail
NLV74LCX541DTG* (In Development)	TSSOP-20 (Pb-Free)	75 Units / Rail
MC74LCX541DTR2G	TSSOP-20 (Pb-Free)	2500 Tape & Reel
NLV74LCX541DTR2G* (In Development)	TSSOP-20 (Pb-Free)	2500 Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.


т

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: SOIC-20 WB							
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or icidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically				

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TSSOP-20 WB	PAGE 1 OF 1				

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G