MC74LVX259

8-Bit Addressable Latch/1-of-8 Decoder CMOS Logic Level Shifter
 With LSTTL-Compatible Inputs

The MC74LVX259 is an 8-bit Addressable Latch fabricated with silicon gate CMOS technology.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The LVX259 is designed for general purpose storage applications in digital systems. The device has four modes of operation as shown in the mode selection table. In the addressable latch mode, the data on Data In is written into the addressed latch. The addressed latch follows the data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output follows the state of Data In with all other outputs in the LOW state. In the Reset mode, all outputs are LOW and unaffected by the address and data inputs. When operating the LVX259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode.

The MC74LVX259 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74LVX259 to be used to interface 5.0 V circuits to 3.0 V circuits.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=7.0 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=2 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- CMOS-Compatible Outputs: $\mathrm{V}_{\mathrm{OH}}>0.8 \mathrm{~V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OL}}<0.1 \mathrm{~V}_{\mathrm{CC}} @$ Load
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Figure 1. Logic Diagram

Figure 2. IEC Logic Symbol
MODE SELECTION TABLE

Enable	Reset	Mode
L	H	Addressable Latch
H	H	Memory
L	L	8-Line Demultiplexer
H	L	Reset

LATCH SELECTION TABLE

Address Inputs		Latch Addressed	
C	B		Q0
L	L	L	Q1
L	L	H	Q2
L	H	L	Q3
L	H	H	Q4
H	L	L	Q5
H	L	H	Q6
H	H	L	Q7
H	H	H	

Figure 3. Expanded Logic Diagram

MC74LVX259

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	V
IIK	Input Diode Current	-20	mA
lok	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	$\begin{array}{lr}\text { Power Dissipation in Still Air } & \text { SOIC Package } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	mW
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{gathered} >2000 \\ >200 \\ >2000 \end{gathered}$	V
LLATCHup	Latchup Performance Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 4)	± 300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambient \quad SOIC Package	$\begin{aligned} & 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to EIA/JESD22-A115-A
3. Tested to JESD22-C101-A
4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	3.6	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range, all Package Types	-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	100
n	ns / V			

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	v_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	- - -		$\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \\ & 0.7 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	-	-	$\begin{aligned} & \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	-	$\begin{aligned} & \hline 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \\ & 0.3 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	V
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	2.0	1.9	2.0	-	1.9	-	V
		$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	3.0	2.9	3.0	-	2.9	-	
		$\mathrm{IOH}=-4 \mathrm{~mA}$	3.0	2.58	-	-	2.48	-	
V_{OL}	Low-Level Output Voltage	$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	2.0	-	0.0	0.1	-	0.1	V
		$\mathrm{l} \mathrm{OL}=50 \mu \mathrm{~A}$	3.0	-	0.0	0.1	-	0.1	
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}$	3.0	-	-	0.36	-	0.44	
1 N	Input Leakage Current	$\mathrm{V}_{1 \mathrm{I}}=5.5 \mathrm{~V}$ or GND	0 to 3.6	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per package)	$\mathrm{V}_{\mathbb{I N}}=\mathrm{V}_{\mathrm{CC}}$ or GND	3.6	1.0	1.0	2.0	-	-	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Data to Output (Figures 4 and 8)	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.0 \end{aligned}$	
$\begin{aligned} & \text { tPLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Address Select to Output (Figures 5 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.0 \end{aligned}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Enable to Output (Figures 6 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.0 \end{aligned}$	
$\mathrm{t}_{\text {PHL }}$	Maximum Propogation Delay, Reset to Output (Figures 6 and 8)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.3 \\ & 9.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 14.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & C_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	-	$\begin{aligned} & 5.6 \\ & 8.0 \end{aligned}$	$\begin{gathered} \hline 9.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.0 \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			-	6	10	-	10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)			Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}$					pF
						30			

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

TIMING REQUIREMENTS Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\leq 85^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Reset or Enable (Figure 7)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	4.5	-	-	5.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	4.5	-	-	5.0	-	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Address or Data to Enable (Figure 7)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	4.0	-	-	4.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	3.0	-	-	3.0	-	
t_{n}	Minimum Hold Time, Enable to Address or Data (Figure 6 or 7)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	2.0	-	-	2.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	2.0	-	-	2.0	-	
$\mathrm{tr}_{\mathrm{r}, \mathrm{t}} \mathrm{t}$	Maximum Input, Rise and Fall Times (Figure 4)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	-	400	-	300	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	-	-	300	-	300	

Figure 4. Switching Waveform
Figure 5. Switching Waveform

Figure 6. Switching Waveform

Figure 7. Switching Waveform

Figure 8. Switching Waveform

*Includes all probe and jig capacitance
Figure 9. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74LVX259DG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74LVX259DR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74LVX259DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74LVX259DTR2G	TSSOP-16 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

EMBOSSED CARRIER DIMENSIONS (See Notes 6 and 7)

Tape Size	$\begin{aligned} & B_{1} \\ & \operatorname{Max} \end{aligned}$	D	D_{1}	E	F	K	P	P_{0}	P_{2}	R	T	W
8 mm	$\begin{aligned} & 4.35 \mathrm{~mm} \\ & \left(0.179^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5 \mathrm{~mm} \\ +0.1 \\ -0.0 \\ \left(0.059^{\prime \prime}\right. \\ +0.004 \\ -0.0) \end{gathered}$	1.0 mm Min (0.179")	$\begin{gathered} 1.75 \mathrm{~mm} \\ \pm 0.1 \\ (0.069 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.5 \mathrm{~mm} \\ \pm 0.5 \\ (1.38 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$		$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.1 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \mathrm{~mm} \\ \pm 0.1 \\ (0.079 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 25 \mathrm{~mm} \\ & \left(0.98^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~mm} \\ & (0.024) \end{aligned}$	$\begin{aligned} & 8.3 \mathrm{~mm} \\ & (0.327) \end{aligned}$
12 mm	$\begin{aligned} & 8.2 \mathrm{~mm} \\ & \left(0.323^{\prime \prime}\right) \end{aligned}$		1.5 mm Min (0.060)		$\begin{gathered} 5.5 \mathrm{~mm} \\ \pm 0.5 \\ (0.217 \\ \left. \pm 0.002^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & \hline 6.4 \mathrm{~mm} \\ & \mathrm{Max} \\ & \left(0.252^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} \hline 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 8.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.315 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$			$\begin{aligned} & 30 \mathrm{~mm} \\ & \left(1.18^{\prime \prime}\right) \end{aligned}$		$\begin{gathered} 12.0 \mathrm{~mm} \\ \pm 0.3 \\ (0.470 \\ \left. \pm 0.012^{\prime \prime}\right) \end{gathered}$
16 mm	$\begin{aligned} & 12.1 \mathrm{~mm} \\ & \left(0.4766^{\prime \prime}\right) \end{aligned}$				$\begin{gathered} 7.5 \mathrm{~mm} \\ \pm 0.10 \\ (0.295 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	7.9 mm Max (0.311")	$\begin{gathered} 4.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 8.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.315 \\ \left. \pm 0.004^{\prime \prime}\right) \\ 12.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.472 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$					$\begin{gathered} 16.3 \mathrm{~mm} \\ (0.642) \end{gathered}$
24 mm	$\begin{aligned} & 20.1 \text { mm } \\ & \left(0.791^{\prime \prime}\right) \end{aligned}$				$\begin{gathered} 11.5 \mathrm{~mm} \\ \pm 0.10 \\ (0.453 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} \hline 11.9 \mathrm{~mm} \\ \mathrm{Max} \\ \left(0.468{ }^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 16.0 \mathrm{~mm} \\ \pm 0.10 \\ (0.63 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$					$\begin{gathered} 24.3 \mathrm{~mm} \\ (0.957) \end{gathered}$

6. Metric Dimensions Govern-English are in parentheses for reference only.
7. $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and K_{0} are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Latches category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
ML4875CS-5 401639B 716165RB 74F373DW 74LVC373ADTR2G 74LVC573ADTR2G NL17SG373DFT2G NLV14044BDG 59628863901RA 5962-88639012A NLV14042BDR2G M22W-1333-21/3/45-90-02 (NI 2.L18.001-21 2.T18.001-21 2.T18.002-18 2.T18.006-18 CQ/AA-KEY CQ/A-M22X1,5-45-28 CQ/A-M22X1,5-45-32 M22-2-D5-2-21-01-P CY74FCT2373CTSOC 421283 MM74HC373WM MM74HC573WM 74LCX373MTC 74LVT16373MTDX 74VHC373MX KLD5.001-02 KLT9.001-02 Z-0233-827-15 MIC58P01YV 74AHCT573D. 112 74LCX16373MTDX CQ/A-M22X1,5-45-16 CQ/A-M22X1,5-45-18 CQ/A-M22X1,5-45-20 CQ/A-M22X1,5-45-24 CQ/A-M22X1,5-45-30 CQT/A-32-18 AE-V0 CQT/A-32 20-AE-V0 CY54FCT841ATDMB TPIC6B273DWRG4 Z-2106-25001-22 2.904.005 2.904.006 2.904.008 TC74HC573APF 74HC373DB. 112 74HCT373D. 652 HEF4043BT. 652

