MC74LVX374

Octal D-Type Flip-Flop with 3-State Outputs

With 5V-Tolerant Inputs

The MC74LVX374 is an advanced high speed CMOS octal D-type flip-flop with 3-state outputs. The inputs tolerate voltages up to 7.0 V , allowing the interface of 5.0 V systems to 3.0 V systems.

This 8-bit D-type flip-flop is controlled by a clock input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

Features

- High Speed: $\mathrm{f}_{\max }=160 \mathrm{MHz}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Low Noise: V ${ }_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

SOIC-20 DW SUFFIX
CASE 751D
TSSOP-20
DT SUFFIX
CASE 948E

PIN ASSIGNMENT

MARKING DIAGRAMS

SOIC-20

TSSOP-20

LVX374 = Specific Device Code
A = Assembly Location
WL, L = Wafer Lot
$Y \quad=$ Year
WW, W = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

PIN NAMES

Pins	Function
$\overline{\text { OE }}$	Output Enable Input
CP	Clock Pulse Input
D0-D7	Data Inputs
O0-O7	3-State Outputs

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Figure 1. Logic Diagram

INPUTS			OUTPUTS	OPERATING MODE
OE	CP	Dn	On	
${ }_{\text {L }}$	\uparrow	I	L H	Load and Read Register
L	\uparrow	X	NC	Hold and Read Register
H	\uparrow	X	Z	Hold and Disable Outputs
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\uparrow	I	Z	Load Internal Register and Disable Outputs

$\mathrm{H}=$ High Voltage Level; $\mathrm{h}=$ High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change, State Prior to Low-to-High Clock Transition; X = High or Low Voltage Level and Transitions are Acceptable; Z = High Impedance State; $\uparrow=$ Low-to-High Transition; $\uparrow=$ Not a Low-to-High Transition; For Icc Reasons DO NOT FLOAT Inputs

MC74LVX374

MAXIMUM RATINGS

Symbol	Parameter	Value	
V_{CC}	DC Supply Voltage	-0.5 to +7.0	
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input Diode Current	-20	
I_{OK}	Output Diode Current	V	
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	
I_{CC}	DC Supply Current, V_{CC} and GND Pins	mA	
P_{D}	Power Dissipation	mA	
$\mathrm{T}_{\text {Stg }}$	Storage Temperature	m	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	2.0	3.6	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Rise and Fall Time	0	100	$\mathrm{~ns} / \mathrm{V}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\underset{\mathrm{VC}}{\mathrm{v}_{\mathrm{cc}}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	High-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \\ & 2.4 \end{aligned}$		V
V_{IL}	Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.6 \end{aligned}$			$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 0.5 \\ & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	High-Level Output Voltage $\left(\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.58 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$		$\begin{gathered} \hline 1.9 \\ 2.9 \\ 2.48 \end{gathered}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}\right)$	$\begin{aligned} & \mathrm{IOL}=50 \mu \mathrm{~A} \\ & \mathrm{IOL}=50 \mu \mathrm{~A} \\ & \mathrm{IOL}=4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 3.0 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.36 \end{gathered}$		$\begin{gathered} \hline 0.1 \\ 0.1 \\ 0.44 \end{gathered}$	V
1 in	Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	3.6			± 0.1		± 1.0	$\mu \mathrm{A}$
loz	Maximum 3-State Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$	3.6			$\begin{gathered} \pm 0.2 \\ 5 \end{gathered}$		± 2.5	$\mu \mathrm{A}$
I_{Cc}	Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	3.6			4.0		40.0	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
${ }^{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle)	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 115 \\ & 60 \end{aligned}$		$\begin{aligned} & 50 \\ & 40 \end{aligned}$		MHz
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 100 \\ & 60 \end{aligned}$	$\begin{gathered} \hline 160 \\ 95 \end{gathered}$		85		
$\begin{aligned} & \text { tpLH, } \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay CP to O	$\mathrm{V}_{C C}=2.7 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & \hline 16.3 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 23.0 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 6.7 \\ & 9.2 \end{aligned}$	$\begin{aligned} & \hline 10.6 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 16.0 \end{aligned}$	
$\begin{aligned} & \text { tpzL, } \\ & \text { tpzH } \end{aligned}$	Output Enable Time OE to O	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 7.6 \\ 10.1 \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & 18.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 210 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.9 \\ & 8.4 \end{aligned}$	$\begin{gathered} \hline 9.3 \\ 12.8 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.5 \end{aligned}$	
$\begin{aligned} & \text { tpLz, } \\ & \text { tpHZ } \end{aligned}$	Output Disable Time OE to O	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		11.5	18.5	1.0	22.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		9.6	13.2	1.0	15.0	
toshl tosth	Output-to-Output Skew (Note 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	ns

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toshl) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
		Min	Typ	Max	Min	Max	
Cin	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {out }}$	Maximum Three-State Output Capacitance		6				pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2)		32				pF

2. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}}(\mathrm{OPR})=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per flip-flop). $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $P_{D}=C_{P D} \bullet V_{C C}{ }^{2} \bullet f_{i n}+I_{C C} \bullet V_{C C}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, Measured in SOIC Package)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	0.5	0.8	V
Volv	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-0.5	-0.8	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		2.0	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		0.8	V

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\frac{\mathrm{T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C}}{\text { Limit }}$	Unit
			Typ	Limit		
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, CP	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 7.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, D to CP	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, D to CP	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	ns

MC74LVX374

SWITCHING WAVEFORMS

Figure 2.

Figure 3.

Figure 4.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 5. Propagation Delay Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVX374DWR2G	SOIC-20 (Pb-Free)	1000 Tape \& Reel
MC74LVX374DTR2G	TSSOP-20 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SCALE 1:1

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES

PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
\mathbf{c}	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
\mathbf{h}	0.25	0.75
L	0.50	0.90
$\boldsymbol{\theta}$	0°	7°

GENERIC
MARKING DIAGRAM*

XXXXX	$=$ Specific Device Code
A	$=$ Assembly Location
WL	$=$ Wafer Lot
YY	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-20 WB | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NO
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE

INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED $0.25(0.010)$ PER SIDE
5. DIMENSION K DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40	BSC	0.252 BSC	
M	0	0°	8°	0

GENERIC MARKING DIAGRAM* НРННННННН

	XXXX
	XXXX
	ALYW.
\bigcirc	-

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present.
DIMENSIONS: MILLIMETERS

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Flip-Flops category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV14027BDG NLX1G74MUTCG 703557B 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA NTE4598B 74LVC74APW-Q100J 74LCX16374MTDX 74LVT74D, 118 74VHCT9273FT(BJ) MM74HC374WM MM74HC74AMX 74LVX74MTCX CD40174BF3A HMC723LC3CTR MM74HCT574MTCX 5962-8681501RA MM74HCT273WM SN74LVC74APW SN74LVC74AD SN74HC273DWR MC74HC11ADG M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74VHCV374FT(BJ) 74VHCV574FT(BJ) SNJ54ALS574BJ SN74LVC74ADR SN74HC574PWR SN74HC374AN SN74AS574DWR SN74ALS175NSR SN74HC175D SN74AC74D 74AHC1G79GV.125 74AHC74D.112 74HC112D.652 74HC574D.652 74HCT173D. 652 74HCT374D. 652 74AHC574D. 118 74AHCT1G79GW. 125 74HC273D.652 74HC74D.653 74HC107D. 652

