ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Dual Supply Octal Translating Transceiver

with 3–State Outputs

The 74LVX4245 is a 24–pin dual–supply, octal translating transceiver that is designed to interface between a 5.0 V bus and a 3.0 V bus in a mixed 3.0 V / 5.0 V supply environment such as laptop computers using a 3.3 V CPU and 5.0 V LCD display. The A port interfaces with the 5V bus; the B port interfaces with the 3.0 V bus.

The Transmit/Receive (T/\overline{R}) input determines the direction of data flow. Transmit (active–High) enables data from the A port to the B port. Receive (active–Low) enables data from the B port to the A port. The Output Enable (\overline{OE}) input, when High, disables both A and B ports by placing them in 3–State.

Features

- Bi-directional Interface Between 5.0 V and 3.0 V Buses
- Control Inputs Compatible with TTL Level
- 5.0 V Data Flow at A Port and 3.0 V Data Flow at B Port
- Outputs Source/Sink 24 mA at 5.0 V Bus and 12 mA at 3.0 V Bus
- Guaranteed Simultaneous Switching Noise Level and Dynamic Threshold Performance
- Available in SOIC and TSSOP Packages
- Functionally Compatible with the 74 Series 245
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

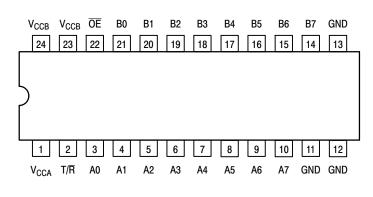
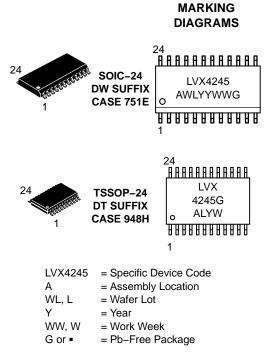



Figure 1. 24–Lead Pinout (Top View)

ON Semiconductor®

www.onsemi.com

(Note: Microdot may be in either location)

PIN NAMES

Pins	Function
OE T/R A0-A7	Output Enable Input Transmit/Receive Input Side A 3–State Inputs or 3–State Outputs
B0–B7	Side B 3–State Inputs or 3–State Outputs

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

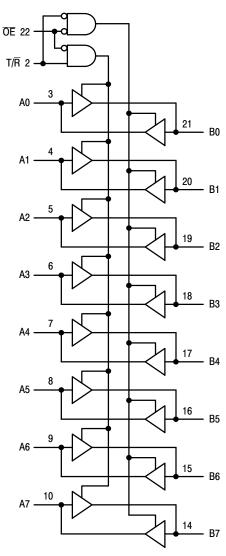


Figure 2. Logic Diagram

INP	UTS	OPERATING MODE
ŌĒ	T/R	Non–Inverting
L	L	B Data to A Bus
L	Н	A Data to B Bus
Н	X	Z

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions are Acceptable; For I_{CC} reasons, Do Not Float Inputs

ABSOLUTE MAXIMUM RATINGS

Symbol	Paramet	er	Value	Condition	Unit
V _{CCA} , V _{CCB}	DC Supply Voltage		-0.5 to +7.0		V
VI	DC Input Voltage	OE, T/R	–0.5 to V _{CCA} +0.5		V
V _{I/O}	DC Input/Output Voltage	An	–0.5 to V _{CCA} +0.5		V
		Bn	–0.5 to V _{CCB} +0.5		V
I _{IK}	DC Input Diode Current	OE , T/ R	±20	V _I < GND	mA
Ι _{ΟΚ}	DC Output Diode Current		±50	$V_O < GND; V_O > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CC} , I _{GND}	DC Supply Current	Per Output Pin Maximum Current at I _{CCA} Maximum Current at I _{CCB}	±50 ±200 ±100		mA
T _{STG}	Storage Temperature Range		-65 to +150		°C
Latchup	DC Latchup Source/Sink Current		±300		mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CCA} , V _{CCB}	Supply Voltage	V _{CCA} V _{CCB}	4.5 2.7	5.5 3.6	V
VI	Input Voltage	OE, T/R	0	V _{CCA}	V
V _{I/O}	Input/Output Voltage	An Bn	0 0	V _{CCA} V _{CCB}	V
T _A	Operating Free–Air Temperature		-40	+85	°C
$\Delta t / \Delta V$	Minimum Input Edge Rate V_{IN} from 30% to 70% of $V_{CC};V_{CC}$ at 3.0V, 4.5V, 5.5V		0	8	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

						T _A = 25°C		T _A = −40 to +85°C	
Symbol	Parameter		Condition	V_{CCA}	V_{CCB}	Тур	G	Guaranteed Limits	
V _{IHA}	Minimum HIGH Level	An, OE T/R	V _{OUT} ≤0.1V	5.5 4.5	3.3 3.3		2.0 2.0	2.0 2.0	V
V _{IHB}	Input Voltage	Bn	or $\geq V_{CC} - 0.1V$	5.0 5.0	3.6 2.7		2.0 2.0	2.0 2.0	V
V _{ILA}	Maximum LOW Level	An, OE T/R	V _{OUT} ≤ 0.1V	5.5 4.5	3.3 3.3		0.8 0.8	0.8 0.8	V
V _{ILB}	Input Voltage	Bn	or $\geq V_{CC} - 0.1V$	5.0 5.0	2.7 3.6		0.8 0.8	0.8 0.8	V
V _{OHA}	Minimum HIGH Level		I _{OUT} = –100μA I _{OH} = –24mA	4.5 4.5	3.0 3.0	4.50 4.25	4.40 3.86	4.40 3.76	V
V _{OHB}	Output Voltage		I _{OUT} = -100μA I _{OH} = -12mA I _{OH} = -8mA	4.5 4.5 4.5	3.0 3.0 2.7	2.99 2.80 2.50	2.9 2.4 2.4	2.9 2.4 2.4	V
V _{OLA}	Maximum LOW Level		I _{OUT} = 100μA I _{OL} = 24mA	4.5 4.5	3.0 3.0	0.002 0.18	0.10 0.36	0.10 0.44	V
V _{OLB}	Output Voltage		I _{OUT} = 100μA I _{OL} = 12mA I _{OL} = 8mA	4.5 4.5 4.5	3.0 3.0 2.7	0.002 0.1 0.1	0.10 0.31 0.31	0.10 0.40 0.40	V

DC ELECTRICAL CHARACTERISTICS

						T _A = 25°C		T _A = −40 to +85°C	
Symbol	Parameter		Condition	V _{CCA}	V _{CCB}	Тур	Typ Guaranteed Limits		Unit
I _{IN}	Max Input Leak- age Current	<u>oe,</u> T/R	V _I = V _{CCA} , GND	5.5	3.6		±0.1	±1.0	μΑ
I _{OZA}	Max 3–State Out- put Leakage	An		5.5	3.6		±0.5	±5.0	μΑ
I _{OZB}	Max 3–State Out- put Leakage	Bn		5.5	3.6		±0.5	±5.0	μΑ
ΔI_{CC}	Maximum I _{CCT} per Input	An, OE T/R	V _I =V _{CCA} -2.1V	5.5	3.6	1.0	1.35	1.5	mA
		Bn	V _I =V _{CCB} -0.6V	5.5	3.6		0.35	0.5	mA
I _{CCA}	Quiescent V _{CCA} Supply Current		An= V_{CCA} or GND Bn= V_{CCB} or GND \overline{OE} =GND T/ \overline{R} =GND	5.5	3.6		8	80	μΑ
I _{CCB}	Quiescent V _{CCB} Supply Current		An= V_{CCA} or GND Bn= V_{CCB} or GND \overline{OE} =GND T/ \overline{R} = V_{CCA}	5.5	3.6		5	50	μΑ
V _{OLPA} V _{OLPB}	Quiet Output Max Dynamic V _{OL}		Notes 1, 2	5.0 5.0	3.3 3.3		1.5 1.2		V
V _{OLVA} V _{OLVB}	Quiet Output Min Dynamic V _{OL}		Notes 1, 2	5.0 5.0	3.3 3.3		-1.2 -0.8		V
V _{IHDA} V _{IHDB}	Min HIGH Level Dynamic Input Voltage		Notes 1, 3	5.0 5.0	3.3 3.3		2.0 2.0		V
V _{ILDA} V _{ILDB}	Max LOW Level Dynamic Input Voltage		Notes 1, 3	5.0 5.0	3.3 3.3		0.8 0.8		V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Worst case package.

Work case parkage.
 Max number of outputs defined as (n). Data inputs are driven 0V to V_{CC} level; one output at GND.
 Max number of data inputs (n) switching. (n-1) inputs switching 0V to V_{CC} level. Input under test switching: V_{CC} level to threshold (V_{IHD}), 0V to threshold (V_{ILD}), f = 1MHz.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Parameter Condition			
C _{IN}	Input Capacitance	$V_{CCA} = 5.0V; V_{CCB} = 3.3V$	4.5	pF	
C _{I/O}	Input/Output Capacitance	$V_{CCA} = 5.0V; V_{CCB} = 3.3V$	15	pF	
C _{PD}	Power Dissipation Capacitance $B \rightarrow A$ (Measured at 10MHz) $A \rightarrow B$	$V_{CCA} = 5.0V$ $V_{CCB} = 3.3V$	55 40	pF	

AC ELECTRICAL CHARACTERISTICS

		T _A = −40 to +85°C C _L = 50pF			T _A = -40 C _L =	to +85°C 50pF	
			_{CCA} = 5V ±0.5V _{CB} = 3.3V ±0.3V		V _{CCA} = 5V ±0.5V V _{CCB} = 2.7V		
Symbol	Parameter	Min	Typ (Note 4)	Max	Min	Max	Unit
t _{PHL} t _{PLH}	Propagation Delay A to B	1.0 1.0	5.1 5.3	9.0 9.0	1.0 1.0	10.0 10.0	ns
t _{PHL} t _{PLH}	Propagation Delay B to A	1.0 1.0	5.4 5.5	9.0 9.0	1.0 1.0	10.0 10.0	ns
t _{PZL} t _{PZH}	Output Enable Time OE to B	1.0 1.0	6.5 6.7	10.5 10.5	1.0 1.0	11.5 11.5	ns
t _{PZL} t _{PZH}	Output Enable Time OE to A	1.0 1.0	5.2 5.8	9.5 9.5	1.0 1.0	10.0 10.0	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to B	1.0 1.0	6.0 3.3	10.0 7.0	1.0 1.0	10.0 7.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time OE to A	1.0 1.0	3.9 2.9	7.5 7.0	1.0 1.0	7.5 7.5	ns
t _{OSHL} t _{OSLH}	Output to Output Skew, Data to Output (Note 5)		1.0	1.5		1.5	ns

 Typical values at V_{CCA} = 5.0V; V_{CCB} = 3.3V at 25°C.
 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74LVX4245DWG	SOIC-24	30 Units / Rail
MC74LVX4245DWR2G	(Pb-Free)	1000 / Tape & Reel
MC74LVX4245DTG		62 Units / Rail
MC74LVX4245DTR2G	TSSOP-24 (Pb-Free)	2500 / Tape & Reel
NLVLVX4245DTR2G*	(, 2 1.00)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Dual Supply Octal Translating Transceiver

The 74LVX4245 is a is a dual–supply device well capable of bidirectional signal voltage translation. This level shifting ability provides an excellent interface between low voltage CPU local bus and a standard 5.0 V I/O bus. The device control inputs can be controlled by either the low voltage CPU and core logic or a bus arbitrator with 5.0 V I/O levels.

The LVX4245 is ideal for mixed voltage applications such as notebook computers using a 3.3 V CPU and 5.0 V peripheral devices.

Applications:

Mixed Mode Dual Supply Interface Solutions

The LVX4245 is designed to solve 3.0 V / 5.0 V interfaces when CMOS devices cannot tolerate I/O levels above their applied V_{CC}. If an I/O pin of a 3.0 V device is driven by a 5.0 V device, the P–Channel transistor in the 3.0 V device will conduct – causing current flow from the I/O bus to the 3.0 V power supply. The result may be destruction of the 3.0 V device through latchup effects. A current limiting resistor may be used to prevent destruction, but it causes speed degradation and needless power dissipation.

A better solution is provided in the LVX4245. It provides two different output levels that easily handle the dual voltage interface. The A port is a dedicated 5.0 V port; the B port is a dedicated 3.0 V port.

Since the LVX4245 is a '245 transceiver, the user may either use it for bidirectional or unidirectional applications. The center 20 pins are configured to match a '245 pinout. This enables the user to easily replace this level shifter with a 3.0 V '245 device without additional layout work or remanufacture of the circuit board (when both buses are 3.0 V).

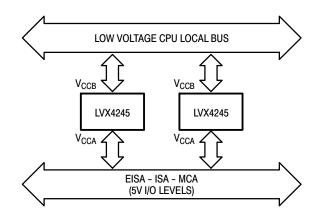


Figure 3. 3.3V/5V Interface Block Diagram

Powering Up the LVX4245

When powering up the LVX4245, please note that if the V_{CCB} pin is powered–up well in advance of the V_{CCA} pin, several milliamps of either I_{CCA} or I_{CCB} current will result. If the V_{CCA} pin is powered–up in advance of the V_{CCB} pin then only nanoamps of Icc current will result. In actuality the V_{CCB} can be powered "slightly" before the V_{CCA} without the current penalty, but this "setup time" is dependent on the power–up ramp rate of the V_{CC} pins. With a ramp rate of approximately 50 mV/ns (50V/µs) a 25 ns setup time was observed (V_{CCB} before V_{CCA}). With a 7.0 V/µs rate, the setup time was about 140ns. When all is said and done, the safest powerup strategy is to simply power V_{CCA} before V_{CCB} . One more note: if the V_{CCB} ramp rate is faster than the V_{CCA} ramp rate then power problems might still occur, even if the V_{CCA} powerup began prior to the V_{CCB} powerup.

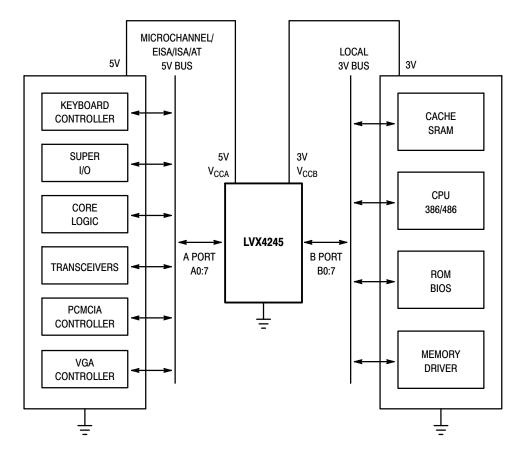


Figure 4. MC74LVX4245 Fits Into a System with 3V Subsystem and 5V Subsystem

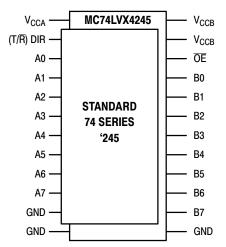
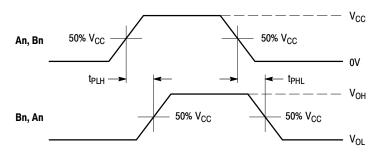
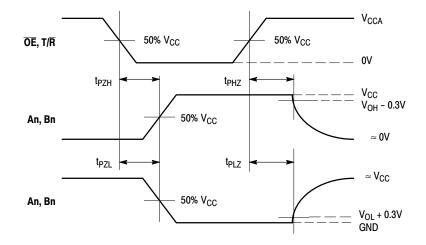
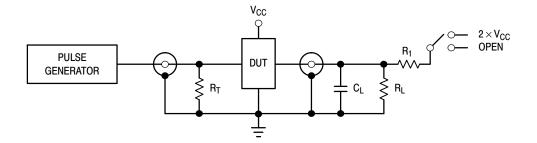




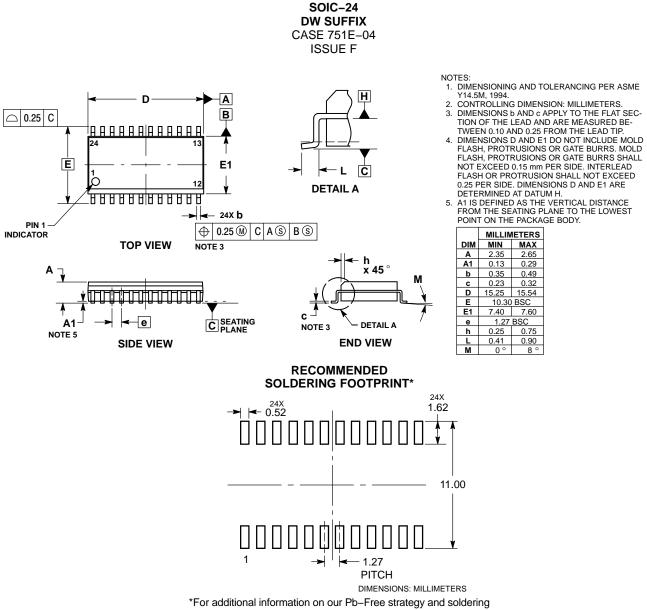
Figure 5. MC74LVX4245 Pin Arrangement Is Compatible to 20–Pin 74 Series '245s


WAVEFORM 1 – PROPAGATION DELAYS

 t_{R} = t_{F} = 2.5ns, 10% to 90%; f = 1MHz; t_{W} = 500ns

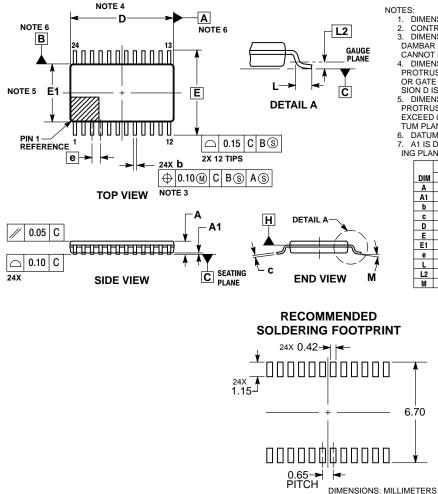
WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES t_R = t_F = 2.5ns, 10% to 90%; f = 1MHz; t_W = 500ns

TEST	SWITCH
t _{PLH} , t _{PHL} , t _{PZH} , t _{PHZ}	Open
t _{PZL} , t _{PLZ}	$2 \times V_{CC}$


 C_L = 50pF or equivalent (Includes jig and probe capacitance)

 $R_{L} = R_{1} = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)


PACKAGE DIMENSIONS

details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSSOP-24 DT SUFFIX CASE 948H **ISSUE B**

DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.

CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL BE 0.08 MAX AT MMC. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.
 DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMEN-SION D IS DETERMINED AT DATUM PLANE H.
 DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEFD 0.25 PER SIDE DIMENSION F1 IS DETERMINED AT DA-

EXCEED 0.25 PER SIDE, DIMENSION E1 IS DETERMINED AT DA-TUM PLANE H.

DATUMS A AND B ARE DETERMINED AT DATUM PLANE H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEAT-ING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MILLIMETERS DIN MIN MAX 1.20 A1 0.05 0.15 0.30 b 0.19 0.09 0.20 D 7.70 7.90 Ε 6.40 BSC E1 4.50 4.30 е 0.65 BSC 0.50 0.75 L2 0.25 BSC

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 74LS645N
 PI74LVCC3245AS
 5962-8683401DA
 5962-8968201LA
 5962-8953501KA
 5962-86834012A
 5962-7802002MFA

 TC74VCX164245(EL,F
 MC74LCX245MNTWG
 TC7WPB8306L8X,LF(S
 MM74HC245AMTCX
 74LVX245MTC
 74ALVC16245MTDX

 74LCXR162245MTX
 74LVXC3245MTCX
 74VHC245M
 JM38510/65553BRA
 FXL2TD245L10X
 74LVC1T45GM,115

 74LVC245ADTR2G
 TC74AC245P(F)
 SNJ54LS245FK
 74LVT245BBT20-13
 74AHC245D.112
 74AHCT245D.112

 SN74LVCH16952ADGGR
 CY74FCT16245TPVCT
 74AHCT245PW.118
 74LV245DB.118
 74LV245D.112
 74LVCR162245ZQLR

 SN74LVCR16245AZQLR
 MC100EP16MNR4G
 MC100LVEP16MNR4G
 714100R
 74HCT643N
 MC100EP16DTR2G
 5962-9221403MRA

 74ALVC164245PAG
 74FCT16245ATPVG
 74FCT16245ATPVG
 74FCT16245ETPAG
 74FCT16245CTSOG