MC74LVXT8053

Analog Multiplexer/ Demultiplexer

High-Performance Silicon-Gate CMOS

The MC74LVXT8053 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low OFF leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from V_{CC} to GND).

The LVXT8053 is similar in pinout to the high-speed HC4053A, and the metal-gate MC14053B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected by means of an analog switch to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off.

The Channel-Select and Enable inputs are compatible with TTL-type input thresholds. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS Logic or from 1.8 V CMOS logic to 3.0 V CMOS Logic while operating at the higher-voltage power supply.

The MC74LVXT8053 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74LVXT8053 to be used to interface 5.0 V circuits to 3.0 V circuits.

This device has been designed so that the ON resistance $\left(R_{\text {on }}\right)$ is more linear over input voltage than $\mathrm{R}_{\text {on }}$ of metal-gate CMOS analog switches.

Features

- Fast Switching and Propagation Speeds
- Low Crosstalk Between Switches
- Diode Protection on All Inputs/Outputs
- Analog Power Supply Range ($\left.\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0 \mathrm{~V}$ to 6.0 V
- Digital (Control) Power Supply Range $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)=2.0 \mathrm{~V}$ to 6.0 V
- Improved Linearity and Lower ON Resistance Than Metal-Gate Counterparts
- Low Noise
- In Compliance With the Requirements of JEDEC Standard No. 7A
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

MARKING DIAGRAMS

16 ABABABAB
LVXT
8053
ALYW.

1) O

TSSOP-16

LVXT8053	$=$ Specific Device Code
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	$=$ Year
WW, W	$=$ Work Week
G or	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet.

MC74LVXT8053

FUNCTION TABLE - MC74LVXT8053

Control Inputs						
		Select				
Enable	C	B	A	ON Channels		
L	L	L	L	Z0	Y0	X0
L	L	L	H	Z0	Y0	X1
L	L	H	L	Z0	Y1	X0
L	L	H	H	Z0	Y1	X1
L	H	L	L	Z1	Y0	X0
L	H	L	H	Z1	Y0	X1
L	H	H	L	Z1	Y1	X0
L	H	H	H	Z1	Y1	X1
H	X	X	X		NONE	

> X = Don't Care

NOTE: This device allows independent control of each switch. Channel-Select Input A controls the X -Switch, Input B controls the Y -Switch and Input C controls the Z -Switch

Figure 1. LOGIC DIAGRAM
Triple Single-Pole, Double-Position Plus Common Off

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IS }}$	Analog Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I	DC Current, Into or Out of Any Pin	-20	mA
P_{D}	Power Dissipation in Still Air,SOIC Package \dagger TSSOP Package \dagger	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating: SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

MC74LVXT8053

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {IS }}$	Analog Input Voltage		0.0	V_{CC}	V
$\mathrm{V}_{\text {in }}$	Digital Input Voltage (Referenced to GND)		GND	V_{CC}	V
$\mathrm{V}_{10}{ }^{\text {* }}$	Static or Dynamic Voltage Across Switch			1.2	V
$\mathrm{T}_{\text {A }}$	Operating Temperature Range, All Package Types		-55	$+85$	${ }^{\circ} \mathrm{C}$
$t_{r}, \mathrm{t}_{\mathrm{f}}$	Input Rise/Fall Time (Channel Select or Enable Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
*For voltage drops across switch greater than 1.2 V (switch on), excessive V_{Cc} current may be drawn; i.e., the current out of the switch may contain both V_{CC} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{Cc} V	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Channel-Select or Enable Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.0 \\ & 2.0 \end{aligned}$	V
VIL	Maximum Low-Level Input Voltage, Channel-Select or Enable Inputs	$\mathrm{R}_{\text {on }}=$ Per Spec	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	$\begin{gathered} 0.53 \\ 0.8 \\ 0.8 \end{gathered}$	V
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current, Channel-Select or Enable Inputs	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}$ or GND,	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current (per Package)	Channel Select, Enable and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} ; \mathrm{V}_{\text {IO }}=0 \mathrm{~V}$	5.5	4	40	160	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS (Analog Section)

Symbol	Parameter	Test Conditions	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
				-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {on }}$	Maximum "ON" Resistance	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { to } \mathrm{GND} \\ & \left\|I_{\mathrm{S}}\right\| \leq 10.0 \mathrm{~mA} \text { (Figures } 1,2 \text {) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 45 \\ & 32 \\ & 28 \end{aligned}$	$\begin{aligned} & 50 \\ & 37 \\ & 30 \end{aligned}$	Ω
		$\begin{aligned} & \hline V_{\text {in }}=V_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \text { (Endpoints) } \\ & \|\mathrm{II}\| \leq 10.0 \mathrm{~mA} \text { (Figures } 1,2 \text {) } \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 35 \\ & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & 30 \end{aligned}$	
$\Delta \mathrm{R}_{\text {on }}$	Maximum Difference in "ON" Resistance Between Any Two Channels in the Same Package	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=1 / 2\left(\mathrm{~V}_{\mathrm{CC}}-\mathrm{GND}\right) \\ & \mid I_{\mathrm{S}} \leq 10.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 20 \\ & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 25 \\ & 15 \\ & 15 \end{aligned}$	Ω
Ioff	Maximum Off-Channel Leakage Current, Any One Channel	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \\ & \text { Switch Off (Figure 3) } \end{aligned}$	5.5	0.1	0.5	1.0	$\mu \mathrm{A}$
	Maximum Off-Channel Leakage Current, Common Channel	$\begin{aligned} & \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{10}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D ; \\ & \text { Switch Off (Figure 4) } \end{aligned}$	5.5	0.1	1.0	2.0	
$\mathrm{I}_{\text {on }}$	Maximum On-Channel Leakage Current, Channel-to-Channel	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} ;$ Switch-to-Switch = V_{CC} or GND; (Figure 5)	5.5	0.1	1.0	2.0	$\mu \mathrm{A}$

MC74LVXT8053

AC CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

	Parameter	$\underset{\mathrm{V}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
Symbol			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{tpLH}^{2}, \\ & \mathrm{t}_{\mathrm{PH} L} \end{aligned}$	Maximum Propagation Delay, Channel-Select to Analog Output (Figure 9)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 25 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 22 \\ & 20 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Analog Input to Analog Output (Figure 10)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 6.0 \\ & 2.0 \\ & 2.0 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figure 11)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 35 \\ & 25 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \\ & 22 \\ & 20 \end{aligned}$	ns
$\begin{aligned} & \text { tpzL, } \\ & \text { tpZH } \end{aligned}$	Maximum Propagation Delay, Enable to Analog Output (Figure 11)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 12 \\ & 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 25 \\ & 14 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 30 \\ & 15 \\ & 12 \\ & 12 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance, Channel-Select or Enable Inputs		10	10	10	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Maximum Capacitance Analog I/O (All Switches Off) Common O/I Feedthrough		35 50 1.0	35 50 1.0	35 50 1.0	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Figure 13)*	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$				pF

${ }^{*}$ Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)

Symbol	Parameter	Condition	\mathbf{v}_{cc}	Limit ${ }^{*}$	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel Bandwidth or Minimum Frequency Response (Figure 6)	$\mathrm{f}_{\text {in }}=1 \mathrm{MHz}$ Sine Wave; Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain OdBm at V_{OB}; Increase $\mathrm{f}_{\text {in }}$ Frequency Until dB Meter Reads $\begin{aligned} & -3 \mathrm{~dB} ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 120 \\ & 120 \\ & 120 \end{aligned}$	MHz
-	Off-Channel Feedthrough Isolation (Figure 7)	$\mathrm{f}_{\text {in }}=$ Sine Wave; Adjust $\mathrm{f}_{\text {in }}$ Voltage to Obtain 0 dBm at $V_{\text {IS }}$ $\mathrm{f}_{\mathrm{in}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-50 \\ & -50 \\ & -50 \\ & \hline \end{aligned}$	dB
		$\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-37 \\ & -37 \\ & -37 \end{aligned}$	
-	Feedthrough Noise. Channel-Select Input to Common I/O (Figure 8)	$\mathrm{V}_{\text {in }} \leq 1 \mathrm{MHz}$ Square Wave ($\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$); Adjust R_{L} at Setup so that $\mathrm{I}_{\mathrm{S}}=0 \mathrm{~A}$; Enable = GND $\mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 25 \\ 105 \\ 135 \end{gathered}$	mV VPP
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 35 \\ 145 \\ 190 \end{gathered}$	
-	Crosstalk Between Any Two Switches (Figure 12)	$f_{\text {in }}=$ Sine Wave; Adjust $f_{\text {in }}$ Voltage to Obtain 0 dBm at $\mathrm{V}_{\text {IS }}$ $\mathrm{f}_{\mathrm{in}}=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline-50 \\ & -50 \\ & -50 \end{aligned}$	dB
		$\mathrm{f}_{\text {in }}=1.0 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-60 \\ & -60 \\ & -60 \\ & \hline \end{aligned}$	
THD	Total Harmonic Distortion (Figure 14)	$\begin{array}{r} \begin{aligned} \hline \mathrm{f}_{\text {in }}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ \mathrm{THD}=T H D_{\text {measured }}-T H D_{\text {source }} \\ \mathrm{V}_{\mathrm{IS}}=2.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ \mathrm{V}_{\mathrm{IS}}=4.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ \mathrm{V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{PP}} \text { sine wave } \\ \hline \end{aligned} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.08 \\ & 0.05 \\ & \hline \end{aligned}$	\%

[^0]
MC74LVXT8053

Figure 1a. Typical On Resistance, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

Figure 1b. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 1c. Typical On Resistance, $\mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{~V}$

Figure 1. On Resistance Test Set-Up

MC74LVXT8053

Figure 2. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up

Figure 4. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up

Figure 6. Off Channel Feedthrough Isolation, Test Set-Up

Figure 3. Maximum Off Channel Leakage Current, Common Channel, Test Set-Up

Figure 5. Maximum On Channel Bandwidth, Test Set-Up

Figure 7. Feedthrough Noise, Channel Select to Common Out, Test Set-Up

Figure 9a. Propagation Delays, Channel Select to Analog Out

Figure 10a. Propagation Delays, Analog In to Analog Out

Figure 11a. Propagation Delays, Enable to Analog Out

Figure 9b. Propagation Delay, Test Set-Up Channel Select to Analog Out

*Includes all probe and jig capacitance
Figure 10b. Propagation Delay, Test Set-Up Analog In to Analog Out

Figure 11b. Propagation Delay, Test Set-Up Enable to Analog Out

Figure 12. Crosstalk Between Any Two Switches, Test Set-Up

Figure 14a. Total Harmonic Distortion, Test Set-Up

Figure 13. Power Dissipation Capacitance, Test Set-Up

Figure 14b. Plot, Harmonic Distortion

APPLICATIONS INFORMATION

The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V} & =\text { logic high } \\
\mathrm{GND}=0 \mathrm{~V} & =\text { logic low }
\end{aligned}
$$

The maximum analog voltage swing is determined by the supply voltages V_{CC}. The positive peak analog voltage should not exceed V_{CC}. Similarly, the negative peak analog voltage should not go below GND. In this example, the difference between V_{CC} and GND is five volts. Therefore, using the configuration of Figure 15, a maximum analog signal of five volts peak-to-peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch.

Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that:

$$
\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}=2 \text { to } 6 \text { volts }
$$

When voltage transients above V_{CC} and/or below GND are anticipated on the analog channels, external Germanium or Schottky diodes $\left(\mathrm{D}_{\mathrm{x}}\right)$ are recommended as shown in Figure 16. These diodes should be able to absorb the maximum anticipated current surges during clipping.

MC74LVXT8053

Figure 15. Application Example

Figure 16. External Germanium or Schottky Clipping Diodes

Figure 17. Interfacing Low Voltage CMOS Inputs

Figure 18. Function Diagram, LVXT8053

MC74LVXT8053

ORDERING INFORMATION

Device	Package	Shipping †
MC74LVXT8053DR2G	SOIC-16	
	(Pb-Free)	2500 Tape \& Reel
MC74LVXT8053DTR2G	TSSOP-16	
	(Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
NLV74HC4066ADR2G HEF4051BP MC74HC4067ADTG DG508AAK/883B NLV14051BDG 016400E PI3V512QE 7705201EC PI2SSD3212NCE NLAS3257CMX2TCG PI5A3157BC6EX PI3DBS12412AZLEX PI3V512QEX PI3DBS16213ZLEX PI3DBS16415ZHEX PS509LEX MUX36S16IRSNR 74LVC1G3157GM-Q10X TC7W53FK,LF CD4053BM96 MC74HC4053ADWR2G SN74LV4051APWR

TC4066BP-NF HEF4053BT. 653 PI3L720ZHEX ADG5408BRUZ-REEL7 ADG1404YRUZ-REEL7 ADG1208YRZ-REEL7
PI2DBS6212ZHEX MAX4704EUB+T ADG1406BRUZ-REEL7 CD4053BPWRG4 74HC4053D.653 74HCT4052PW. 118 74LVC2G53DP. 125 74HC4052DB. 112 74HC4052PW. 112 74HC4053DB. 112 74HC4067DB. 112 74HC4351DB.112 74HCT4052D. 112 74HCT4052DB. 112 74HCT4053DB. 112 74HCT4351D. 112 74LV4051PW. 112 FSA1256L8X_F113 PI5V330QE PI5V331QE 59628771601EA 5962-87716022A

[^0]: *Limits not tested. Determined by design and verified by qualification.

