MC74VHC157

Quad 2-Channel Multiplexer

The MC74VHC157 is an advanced high-speed CMOS quad 2-channel multiplexer, fabricated with silicon gate CMOS technology. It achieves high-speed operation similar to equivalent Bipolar-Schottky TTL, while maintaining CMOS low-power dissipation.

It consists of four 2-input digital multiplexers with common select (S) and enable ($\overline{\mathrm{E}}$) inputs. When $\overline{\mathrm{E}}$ is held High, selection of data is inhibited and all the outputs go Low.

The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V , allowing the interface of 5 V systems to 3 V systems.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=4.1 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V ${ }_{\text {OLP }}=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 82 FETs
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor

http://onsemi.com

MARKING DIAGRAMS

SOIC-16 D SUFFIX
CASE 751B

TSSOP-16
DT SUFFIX
CASE 948F

$$
\begin{array}{ll}
\text { VHC157 } & =\text { Specific Device Code } \\
\text { A } & =\text { Assembly Location } \\
\text { WL, L } & =\text { Wafer Lot } \\
\text { Y } & =\text { Year } \\
\text { WW, W } & =\text { Work Week } \\
\text { G or } & =\text { Pb-Free Package }
\end{array}
$$

ORDERING INFORMATION

Device	Package	Shipping
MC74VHC157DR2G	SOIC-16	2500 Units/Reel
MC74VHC157DTR2G	TSSOP-16	2500 Units/Reel

Figure 1. Pin Assignment

MC74VHC157

Figure 2. Expanded Logic Diagram

Figure 3. IEC Logic Symbol

FUNCTION TABLE

Inputs		Outputs
E	S	
H	X	L
L	L	AO-A3
L	H	$\mathrm{BO}-\mathrm{B} 3$

$A 0-A 3, B 0-B 3=$ the levels of the respective Data-Word Inputs.

MC74VHC157

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cc }}$	DC Supply Voltage	-0.5 to +7.0	V
V_{1}	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+7.0$	V
V_{O}	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+7.0$	V
IIK	DC Input Diode Current $\quad \mathrm{V}_{1}<$ GND	-20	mA
$\mathrm{I}_{\text {OK }}$	DC Output Diode Current $\quad \mathrm{V}_{\text {O }}<$ GND	± 20	mA
Io	DC Output Sink Current	± 25	mA
$\mathrm{I}_{\text {cc }}$	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature under Bias	+ 150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{D}	Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$	250	mW
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94-VO (0.125 in)	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \mathrm{~N} / \mathrm{A} \end{gathered}$	V
ILatch-Up	Latch-Up Performance Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.
5. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit	
V_{CC}	DC Supply Voltage	2.0	5.5	V	
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	(Note 6)	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
T_{A}	Operating Temperature Range, all Package Types		-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	100	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	20	

6. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 4. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	High-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$	$\begin{gathered} 1.5 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$			$\begin{gathered} 1.5 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{gathered} 1.5 \\ 0.7 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		V
V_{IL}	Low-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } 5.5 \end{gathered}$			$\begin{gathered} 0.5 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{gathered} 0.5 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$		$\begin{gathered} 0.5 \\ 0.3 \mathrm{~V}_{\mathrm{CC}} \end{gathered}$	V
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{gathered} 2.48 \\ 3.8 \end{gathered}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	2.0 3.0 4.5		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}_{\mathrm{OH}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
I_{IN}	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathbb{N}}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{GND} \end{aligned}$	0 to 5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
${ }^{\text {cc }}$	Quiescent Supply Current	$\begin{aligned} & V_{V_{N}}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	5.5			4.0		40.0		40.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 \mathrm{~ns}$)

Symbol	Characteristic				A $=25$		TA	$5^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	¢ $125^{\circ} \mathrm{C}$	
		Test Conditions		Min	Typ	Max	Typ	Max	Typ	Max	Unit
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, A to B to Y	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.2 \\ & 8.7 \end{aligned}$	$\begin{gathered} \hline 9.7 \\ 13.2 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & 15.0 \end{aligned}$	ns
		$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.1 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay, S to Y	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.4 \\ 10.9 \end{gathered}$	$\begin{aligned} & 13.2 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 19.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 19.0 \end{aligned}$	ns
		$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.3 \\ & 6.8 \end{aligned}$	$\begin{gathered} \hline 8.1 \\ 10.1 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 9.5 \\ 11.5 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 9.5 \\ 11.5 \end{gathered}$	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Propagation Delay, E to Y	$\mathrm{V}_{C C}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.7 \\ 11.2 \end{gathered}$	$\begin{aligned} & \hline 13.6 \\ & 17.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 16.0 \\ & 19.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 16.0 \\ & 19.5 \end{aligned}$	ns
		$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.6 \\ & 7.1 \end{aligned}$	$\begin{gathered} \hline 8.6 \\ 10.6 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance				4	10		10		10	pF

C_{PD}	Power Dissipation Capacitance (Note 7)	Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{V}$	

7. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} . \mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} \bullet V_{C C}{ }^{2} \bullet f_{i n}+I_{C C} \bullet V_{C C}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
V OLP	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	0.3	0.8	V
Volv	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-0.3	-0.8	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		3.5	V
VILD	Maximum Low Level Dynamic Input Voltage		1.5	V

Figure 5. Switching Waveform

Figure 6. Inverting Switching

*Includes all probe and jig capacitance.

Figure 7. Test Circuit

Figure 8. Input Equivalent Circuit

SCALE 1:1

STYLE 1:	
PIN 1.	COLLECTOR
2.	BASE
3.	EMITTER
4.	NO CONNECTION
5.	EMITTER
6.	BASE
7.	COLLECTOR
8.	COLLECTOR
9.	BASE
10.	EMITTER
11.	NO CONNECTION
12.	EMITTER
13.	BASE
14.	COLLECTOR
15.	EMITTER
16.	COLLECTOR

STYLE 2:	
PIN 1.	CATHODE
2.	ANODE
3.	NO CONNECTION
4.	CATHODE
5.	CATHODE
6.	NO CONNECTION
7.	ANODE
8.	CATHODE
9.	CATHODE
10.	ANODE
11.	NO CONNECTION
12.	CATHODE
13.	CATHODE
14.	NO CONNECTION
15.	ANODE
16.	CATHODE

STYLE 3:		STYLE 4:	
PIN 1.	COLLECTOR, DYE \#1	PIN 1.	COLLECTOR, DYE \#1
2.	BASE, \#1	2.	COLLECTOR, \#1
3.	EMITTER, \#1	3.	COLLECTOR, \#2
4.	COLLECTOR, \#1	4.	COLLECTOR, \#2
5.	COLLECTOR, \#2	5.	COLLECTOR, \#3
6.	BASE, \#2	6.	COLLECTOR, \#3
7.	EMITTER, \#2	7.	COLLECTOR, \#4
8.	COLLECTOR, \#2	8.	COLLECTOR, \#4
9.	COLLECTOR, \#3	9.	BASE, \#4
10.	BASE, \#3	10.	EMITTER, \#4
11.	EMITTER, \#3	11.	BASE, \#3
12.	COLLECTOR, \#3	12.	EMITTER, \#3
13.	COLLECTOR, \#4	13.	BASE, \#2
14.	BASE, \#4	14.	EMITTER, \#2
15.	EMITTER, \#4	15.	BASE, \#1
16.	COLLECTOR, \#4	16.	EMITTER, \#1

SOLDERING FOOTPRINT
15.
16. CATHODE STYLE 5:
PIN 1. DRAIN, DYE \#1
STYLE 6:
PIN 1. CATHODE
2. DRAIN, \#1
3. DRAIN, \#2
4. DRAIN, +2
5. DRAIN, \#3
6. DRAIN, \#3
7. DRAIN, \#4

CATHODE

- 8. CATHODE

10. SOURCE, \#4
$\begin{array}{lll}\text { 10. } & \text { SOURCE, \#4 } & \text { 10. ANODE } \\ \text { 11. GATE, \#3 } & \text { 11. ANODE } & \text { 10. COMMON DRAIN (OUTPUT) }\end{array}$
. ANODE
STYLE 7:
PIN 1. SOURCE N-CH
11. COMMON DRAIN (OUTPUT)
12. COMMON DRAIN (OUTPUT)
13. GATE P-CH
14. COMMON DRAIN (OUTPUT)
15. COMMON DRAIN (OUTPUT)
16. COMMON DRAIN (OUTPUT)
17. COMMON DRAIN (OUTPUT)
18. SOURCE, \#3 12. ANODE 12. COMMON DRAIN (OUTPUT)
$\begin{array}{lll}\text { 13. } \text { GATE, \#2 } & \text { 13. ANODE } & \text { 13. GATE N-CH } \\ \text { 14. SOURCE, \#2 } & \text { 14. ANODE } & \text { 14. COMMON DRAIN (OUTPUT) }\end{array}$
$\begin{array}{lll}\text { 14. SOURCE, \#2 } & \text { 14. ANODE } & \text { 14. COMMON DRAIN (OUTPUT) } \\ \text { 15. GATE, } \# 1 & \text { 15. ANODE } & \text { 15. COMMON DRAIN (OUTPUT) }\end{array}$
19. SOURCE, \#1
20. ANODE
21. SOURCE N-CH

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE $0.127(0.005)$ TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	9.80	10.00	0.386	0.393
B	3.80	4.00	0.150	0.157
C	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	
G	1.27		0.049	
J	0.19	0.25	0.050	
K	0.10	0.25	0.009	
M	0.0	0.004	0.009	
P	5.80	6.20	0.229	7°
R	0.25	0.50	0.244	

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

[^0]

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006
SCALE 2:1

NOTES

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

DIM	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	4.90	5.10	0.193	0.200		
B	4.30	4.50	0.169	0.177		
C	---	1.20	---	0.047		
D	0.05	0.15	0.002	0.006		
F	0.50	0.75	0.020	0.030		
G	0.65		BSC	0.026		BSC
H	0.18	0.28	0.007	0.011		
J	0.09	0.20	0.004	0.008		
J1	0.09	0.16	0.004	0.006		
K	0.19	0.30	0.007	0.012		
K1	0.19	0.25	0.007			
L	6.40		BSC	0.010		
M	0		0.252	8°		

SOLDERING FOOTPRINT

GENERIC MARKING DIAGRAM*

XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
Gor v	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE
NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG
M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)
74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8

SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D. 652

[^0]: ON Semiconductor and (ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

