MC74VHC1G09E

2-Input AND Gate with Open Drain Output

The MC74VHC1G09E is an advanced high speed CMOS 2-input AND gate with open drain output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including an open drain output which provides the capability to set output switching level. This allows the MC74VHC1G09E to be used to interface 5 V circuits to circuits of any voltage between V_{CC} and 5.5 V using an external resistor and power supply.

The MC74VHC1G09E input structure provides protection when voltages up to 5.5 V are applied, regardless of the supply voltage.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=4.3 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Internal Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FETs $=62$; Equivalent Gates $=16$
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAMS

$$
\begin{array}{ll}
\text { VX }=\text { Device Code } \\
\text { M } & =\text { Date Code }
\end{array}
$$

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT	
1	IN B
2	IN A
3	GND
4	OUT Y
5	V CC

FUNCTION TABLE

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	Z

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MC74VHC1G09E

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit
$V_{\text {CC }}$	DC Supply Voltage	-0.5 to +6.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +6.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	-0.5 to +6.5	V
IIK	Input Diode Current	-20	mA
lok	Output Diode Current	+20	mA
Iout	DC Output Current, per Pin	+25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND	+50	mA
P_{D}	Power dissipation in still air	200	mW
θ_{JA}	Thermal resistance	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TL	Lead temperature, 1 mm from case for 10 s	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature under bias	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand Voltage $\begin{array}{r}\text { Human Body Model (Note 1) } \\ \text { Charged Device Model (Note 2) }\end{array}$	$\begin{aligned} & 4000 \\ & 1000 \end{aligned}$	V
ILatchup	Latchup Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 3)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to JESD22-C101-A
3. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0.0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	0.0	7.0	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	10
	$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	$\mathrm{~ns} / \mathrm{V}$		
		0	5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55 \leq \mathrm{T}_{\text {A }} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$			$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{aligned} & 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		2.0 3.0 4.5 5.5			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{aligned} & \hline 0.5 \\ & 0.9 \\ & 1.35 \\ & 1.65 \end{aligned}$	V
V_{OL}	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \\ & \hline \end{aligned}$	V
1 N	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	$\begin{aligned} & 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1.0		20		40	$\mu \mathrm{A}$
IofF	Power Off-Output Leakage Current	$\begin{array}{\|l} \hline \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V} \\ \hline \end{array}$	0			0.25		2.5		5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\operatorname{Input} t_{r}=t_{f}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
tpzL	Maximum Output Enable Time, Input A or B to Y	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 & \mathrm{~V}_{\mathrm{L}}=15 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=1000 \Omega & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & 6.2 \\ & 8.7 \end{aligned}$	$\begin{gathered} \hline 8.8 \\ 12.3 \end{gathered}$		$\begin{aligned} & 10.5 \\ & 14.0 \end{aligned}$		$\begin{aligned} & 12.5 \\ & 16.5 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \end{aligned} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} .$		$\begin{aligned} & \hline 4.3 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 7.9 \end{aligned}$		$\begin{aligned} & 7.0 \\ & 9.0 \end{aligned}$		$\begin{gathered} 9.0 \\ 11.0 \end{gathered}$	
tplz	Maximum Output Disable Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \end{aligned}$		8.7	12.3		14.0		16.5	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1000 \Omega \end{aligned}$		5.8	7.9		9.0		11.0	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			6.0	10		10		10	pF

		Typical @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}, \mathbf{V} \mathbf{C C}=5.0 \mathbf{V}$	
C_{PD}	Power Dissipation Capacitance (Note 4)	18	pF

4. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

Figure 3. Output Voltage Mismatch Application

Figure 4. Switching Waveforms

$C_{L}=50 \mathrm{pF}$ equivalent (Includes jig and probe capacitance)
$R_{L}=1000 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 5. Test Circuit

Figure 6. Complex Boolean Functions

Figure 7. LED Driver

Figure 8. GTL Driver

ORDERING INFORMATION

Device	Package	Shipping †
MC74VHC1G09EDFT2G	SC70-5 / SC-88A / SOT-353 $($ Pb-Free $)$	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74VHC1G09E

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353)
CASE 419A-02
ISSUE L

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH
3. 419A-01 OBSOLETE. NEW STANDARD

419A-01
$419 \mathrm{~A}-02$.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	0.071	0.087	1.80	2.20		
B	0.045	0.053	1.15	1.35		
C	0.031	0.043	0.80	1.10		
D	0.004	0.012	0.10			
G	0.026		BSC	0.65 BSC		
H	--		0.004	---		
J	0.004	0.010	0.10			
K	0.004	0.012	0.10			
N	0.008		REF	0.20		REF
S	0.079		0.087	2.00		2.20

SOLDERING FOOTPRINT*

*For additional information on our $\mathrm{Pb}-F r e e$ strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns ine rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canad Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderl|
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Logic Gates category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC85N NLU1G32AMUTCG CD4068BE NL17SG32P5T5G NL17SG86DFT2G NLV14001UBDR2G NLX1G11AMUTCG
NLX1G97MUTCG 74LS38 74LVC32ADTR2G MC74HCT20ADTR2G NLV17SZ00DFT2G NLV17SZ02DFT2G NLV74HC02ADR2G
74HC32S14-13 74LS133 74LVC1G32Z-7 M38510/30402BDA 74LVC1G86Z-7 74LVC2G08RA3-7 NLV74HC08ADTR2G
NLV74HC14ADR2G NLV74HC20ADR2G NLX2G86MUTCG 5962-8973601DA 74LVC2G02HD4-7 NLU1G00AMUTCG
74LVC2G32RA3-7 74LVC2G00HD4-7 NL17SG02P5T5G 74LVC2G00HK3-7 74LVC2G86HK3-7 NLX1G99DMUTWG NLVVHC1G00DFT2G NLVHC1G08DFT2G NLV7SZ57DFT2G NLV74VHC04DTR2G NLV27WZ86USG NLV27WZ00USG

NLU1G86CMUTCG NLU1G08CMUTCG NL17SZ32P5T5G NL17SZ00P5T5G NL17SH02P5T5G 74AUP2G00RA3-7
NLV74HC02ADTR2G NLX1G332CMUTCG NL17SG86P5T5G NL17SZ05P5T5G NLV74VHC00DTR2G

