Noninverting 3-State Buffer MC74VHC1G125, MC74VHC1GT125

The MC74VHC1G125 / MC74VHC1GT125 is a single non-inverting 3 -state buffer in tiny footprint packages. The MC74VHC1G125 has CMOS-level input thresholds while the MC74VHC1GT125 has TTL-level input thresholds.

The internal circuit is composed of three stages, including a buffered 3-state output which provides high noise immunity and stable output.

The input structures provide protection when voltages up to 5.5 V are applied, regardless of the supply voltage. This allows the device to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ and when the output voltage exceeds V_{CC}. These input and output structures help prevent device destruction caused by supply voltage - input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Designed for 2.0 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ Operation
- $3.5 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}$ at 5 V (typ)
- Inputs/Outputs Over-Voltage Tolerant up to 5.5 V
- I IOFF Supports Partial Power Down Protection
- Source/Sink 8 mA at 3.0 V
- Available in SC-88A, SC-74A, TSOP-5, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

Figure 1. Logic Symbol

MARKING DIAGRAMS

SOT-953
P5 SUFFIX
CASE 527AE

TSOP-5
DT SUFFIX
CASE 483

DBV SUFFIX CASE 318BQ
SC-88A DF SUFFIX
CASE 419A

UDFN6
1.2×1.0
CASE 517AA

$$
\begin{array}{ll}
\text { XX } & =\text { Specific Device Code } \\
\text { M } & =\text { Date Code* } \\
\text { - } & =\text { Pb-Free Package }
\end{array}
$$

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

See detailed ordering, marking and shipping information in the package dimensions section on page 8 of this data sheet.

MC74VHC1G125, MC74VHC1GT125

(SC-88A / TSOP-5 / SC-74A)

Figure 2. Pinout (Top View)

PIN ASSIGNMENT
(SC-88A / TSOP-5 / SC-74A)

Pin	Function
1	$\overline{\mathrm{OE}}$
2	A
3	GND
4	Y
5	$\mathrm{~V}_{\mathrm{CC}}$

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	A
2	GND
3	$\overline{\mathrm{OE}}$
4	Y
5	$\mathrm{~V}_{\mathrm{CC}}$

PIN ASSIGNMENT (UDFN)

Pin	Function
1	OE
2	A
3	GND
4	Y
5	NC
6	$\mathrm{~V}_{\mathrm{CC}}$

FUNCTION TABLE

Input		Output
$\mathbf{O E}$	A	\mathbf{Y}
L	L	L
L	H	H
H	X	Z

X = Don't Care

MC74VHC1G125, MC74VHC1GT125

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V_{CC}	DC Supply Voltage	TSOP-5, SC-88A (NLV) SC-74A, SC-88A, UDFN6, SOT-953	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	TSOP-5, SC-88A (NLV) SC-74A, SC-88A, UDFN6, SOT-953	$\begin{aligned} & -0.5 \text { to }+7.0 \\ & -0.5 \text { to }+6.5 \end{aligned}$	V
V OUT	DC Output Voltage TSOP-5, SC-88A (NLV)	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	$\begin{gathered} -0.5 \text { to } V_{\mathrm{cc}}+0.5 \\ -0.5 \text { to }+7.0 \\ -0.5 \text { to }+7.0 \end{gathered}$	V
	DC Output Voltage SC-74A, SC-88A, UDFN6, SOT-953	Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	$\begin{gathered} -0.5 \text { to } \mathrm{V}_{\mathrm{cc}}+0.5 \\ -0.5 \text { to }+6.5 \\ -0.5 \text { to }+6.5 \end{gathered}$	V
$\mathrm{IIK}^{\text {K }}$	DC Input Diode Current	$\mathrm{V}_{\mathrm{IN}}<$ GND	-20	mA
lok	DC Output Diode Current	$\mathrm{V}_{\text {OUT }}$ < GND	-20	mA
IOUT	DC Output Source/Sink Current		± 25	mA
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC Supply Current per Supply Pin or Ground Pin		± 50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range		-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 secs		260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias		+150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Note 2)	$\begin{array}{r} \text { SC-88A } \\ \text { SC-74A } \\ \text { SOT-953 } \\ \text { UDFN6 } \end{array}$	$\begin{aligned} & 377 \\ & 320 \\ & 254 \\ & 154 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$P_{\text {D }}$	Power Dissipation in Still Air	$\begin{array}{r} \text { SC-88A } \\ \text { SC-74A } \\ \text { SOT-953 } \\ \text { UDFN6 } \end{array}$	$\begin{aligned} & 332 \\ & 390 \\ & 491 \\ & 812 \end{aligned}$	mW
MSL	Moisture Sensitivity		Level 1	-
F_{R}	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	$\begin{aligned} & 2000 \\ & 1000 \end{aligned}$	V
ILatchup	Latchup Performance (Note 4)		± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Applicable to devices with outputs that may be tri-stated.
2. Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
3. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
4. Tested to EIA/JESD78 Class II.

MC74VHC1G125, MC74VHC1GT125

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		2.0	5.5	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage		0	5.5	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage	TSOP-5, SC-88A (NLV)	0	V_{CC}	V
	DC Output Voltage	SC-74A, SC-88A, UDFN6, SOT-953 Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode $\left(\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}\right)$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & 5.5 \\ & 5.5 \end{aligned}$	
T_{A}	Operating Temperature Range		-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\begin{array}{r} \text { TSOP-5, SC-88A (NLV) } \\ \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 100 \\ 20 \end{gathered}$	ns / V
	Input Rise and Fall Time	$\begin{array}{r} \text { SC-74A, SC-88A, UDFN6, SOT- } 953 \\ \mathrm{~V} \mathrm{VC}=2.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 20 \\ 20 \\ 10 \\ 5 \\ \hline \end{gathered}$	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (MC74VHC1G125)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	High-Level Input Voltage		2.0	1.5	-	-	1.5	-	1.5	-	V
			3.0	2.1	-	-	2.1	-	2.1	-	
			4.5	3.15	-	-	3.15	-	3.15	-	
			5.5	3.85	-	-	3.85	-	3.85	-	
V_{IL}	Low-Level Input Voltage		2.0	-	-	0.5	-	0.5	-	0.5	V
			3.0	-	-	0.9	-	0.9	-	0.9	
			4.5	-	-	1.35	-	1.35	-	1.35	
			5.5	-	-	1.65	-	1.65	-	1.65	
V_{OH}	High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 1.9 \\ 2.9 \\ 4.4 \\ 2.58 \\ 3.94 \end{gathered}$	$\begin{gathered} 2.0 \\ 3.0 \\ 4.5 \\ - \\ - \end{gathered}$	- - - -	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \\ & 2.48 \\ & 3.80 \end{aligned}$	- - - -	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \\ & 2.34 \\ & 3.66 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	V
V ${ }_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{IOL}^{2}=50 \mu \mathrm{AA} \\ & \mathrm{OL}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	- - - -	$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ - \\ - \end{gathered}$	$\begin{gathered} 0.1 \\ 0.1 \\ 0.1 \\ 0.36 \\ 0.36 \end{gathered}$	- - -	$\begin{gathered} 0.1 \\ 0.1 \\ 0.1 \\ 0.44 \\ 0.44 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 0.1 \\ 0.1 \\ 0.1 \\ 0.52 \\ 0.52 \end{gathered}$	V
I_{N}	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{GND} \end{aligned}$	$\begin{gathered} 2.0 \\ \text { to } 5.5 \end{gathered}$	-	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
Ioz	3-State Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	5.5	-	-	± 0.25	-	± 2.5	-	± 2.5	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0	-	-	1.0	-	10	-	10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & V_{I N}=V_{C C} \text { or } \\ & \text { GND } \end{aligned}$	5.5	-	-	1.0	-	20	-	40	$\mu \mathrm{A}$

MC74VHC1G125, MC74VHC1GT125

DC ELECTRICAL CHARACTERISTICS (MC74VHC1GT125)

Symbol	Parameter	Test Conditions	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\text {A }} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	High-Level Input Voltage		2.0	1.0	-	-	1.0	-	1.0	-	V
			3.0	1.4	-	-	1.4	-	1.4	-	
			4.5	2.0	-	-	2.0	-	2.0	-	
			5.5	2.0	-	-	2.0	-	2.0	-	
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage		2.0	-	-	0.28	-	0.28	-	0.28	V
			3.0	-	-	0.45	-	0.45	-	0.45	
			4.5	-	-	0.8	-	0.8	-	0.8	
			5.5	-	-	0.8	-	0.8	-	0.8	
V_{OH}	High-Level Output Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 1.9 \\ 2.9 \\ 4.4 \\ 2.58 \\ 3.94 \end{gathered}$	$\begin{gathered} 2.0 \\ 3.0 \\ 4.5 \\ - \\ - \end{gathered}$	- - -	$\begin{gathered} 1.9 \\ 2.9 \\ 4.4 \\ 2.48 \\ 3.80 \end{gathered}$	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{gathered} 1.9 \\ 2.9 \\ 4.4 \\ 2.34 \\ 3.66 \end{gathered}$		V
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{gathered} 0.0 \\ 0.0 \\ 0.0 \\ - \\ - \end{gathered}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.36 \\ & 0.36 \end{aligned}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.1 \\ 0.44 \\ 0.44 \end{gathered}$		$\begin{gathered} 0.1 \\ 0.1 \\ 0.1 \\ 0.52 \\ 0.52 \end{gathered}$	V
1 N	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \text { GND } \end{aligned}$	$\begin{gathered} 2.0 \\ \text { to } 5.5 \end{gathered}$	-	-	± 0.1	-	± 1.0	-	± 1.0	$\mu \mathrm{A}$
loz	3-State Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	5.5	-	-	± 0.25	-	± 2.5	-	± 2.5	$\mu \mathrm{A}$
IofF	Power Off Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V} \end{aligned}$	0	-	-	1.0	-	10	-	10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \text { GND } \end{aligned}$	5.5	-	-	1.0	-	20	-	40	$\mu \mathrm{A}$
${ }^{\text {CCCT }}$	Increase in Quiescent Supply Current per Input Pin	One Input: $\mathrm{V}_{\text {IN }}$ $=3.4 \mathrm{~V}$; Other Input at V_{CC} or GND	5.5	-	-	1.35	-	1.5	-	1.65	mA

MC74VHC1G125, MC74VHC1GT125

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLL}}, \\ & \mathrm{t}_{\mathrm{PH}}, \end{aligned}$	Propagation Delay, A to Y (Figures 3 and 4)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.0 to 3.6	-	4.5	8.0	-	9.5	-	12.0	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	6.4	11.5	-	13.0	-	16.0	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	4.5 to 5.5	-	3.5	5.5	-	6.5	-	8.5	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	4.5	7.5	-	8.5	-	10.5	
$\begin{aligned} & \text { tpZL, } \\ & \mathrm{t}_{\text {PZH }} \end{aligned}$	Output Enable Time, $\overline{O E}$ to Y (Figures 3 and 4)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.0 to 3.6	-	4.5	8.0	-	9.5	-	11.5	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	6.4	11.5	-	13.0	-	15.0	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	4.5 to 5.5	-	3.5	5.1	-	6.0	-	8.5	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	4.5	7.1	-	8.0	-	10.5	
$\begin{aligned} & \text { tpLZ, } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Output Disable Time, $\overline{O E}$ to Y (Figures 3 and 4)	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	3.0 to 3.6	-	6.5	9.7	-	11.5	-	14.5	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	8.0	13.2	-	15.0	-	18.0	
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	4.5 to 5.5	-	4.8	6.8	-	8.0	-	10.0	
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		-	7.0	8.8	-	10.0	-	12.0	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			-	4.0	10	-	10	-	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	Output in High Impedance State		-	6.0	-	-	-	-	-	pF

		Typical @ 25 ${ }^{\circ} \mathbf{C}, \mathbf{\mathbf { V } _ { \mathbf { C C } } = 5 . 0 \mathbf { V }}$	
C	pF		

5. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

MC74VHC1G125, MC74VHC1GT125

Test	Switch Position	C_{L}, pF	RL, $\boldsymbol{\Omega}$
$\mathrm{t}_{\text {PLH }} / \mathrm{t}_{\text {PHL }}$	Open	See AC Characteristics Table	X
$\mathrm{t}_{\text {PLZ }} / \mathrm{t}_{\text {PZL }}$	$V_{\text {CC }}$		1 k
$\mathrm{t}_{\text {PHZ }} / \mathrm{t}_{\text {PZH }}$	GND		1 k

X = Don't Care
C_{L} includes probe and jig capacitance
R_{T} is $\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
$\mathrm{f}=1 \mathrm{MHz}$
Figure 3. Test Circuit

Figure 4. Switching Waveforms

$\mathbf{v}_{\mathbf{C C}}, \mathbf{v}$	$\mathbf{V}_{\mathbf{m o}}, \mathbf{V}$			
			$\mathbf{t}_{\mathbf{P Z L}}, \mathbf{t}_{\mathbf{P L Z}}, \mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{v}_{\mathbf{Y},} \mathbf{v}$
	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3
4.5 to 5.5	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$	0.3

MC74VHC1G125, MC74VHC1GT125

ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping ${ }^{\dagger}$
M74VHC1G125DFT1G	SC-88A	W0	Q2	3000 / Tape \& Reel
M74VHC1G125DFT2G	SC-88A	W0	Q4	3000 / Tape \& Reel
NLVVHC1G125DFT1G*	SC-88A	W0	Q2	3000 / Tape \& Reel
M74VHC1GT125DF1G	SC-88A	W1	Q2	3000 / Tape \& Reel
M74VHC1GT125DF2G	SC-88A	W1	Q4	3000 / Tape \& Reel
NLVVHC1GT125DF1G*	SC-88A	W1	Q2	3000 / Tape \& Reel
NLVVHC1GT125DF2G*	SC-88A	W1	Q4	3000 / Tape \& Reel
MC74VHC1G125DBVT1G	SC-74A	W0	Q4	3000 / Tape \& Reel
MC74VHC1GT125DBVT1G	SC-74A	W1	Q4	3000 / Tape \& Reel
M74VHC1G125DTT1G	TSOP-5	W0	Q4	3000 / Tape \& Reel
M74VHC1GT125DT1G	TSOP-5	W1	Q4	3000 / Tape \& Reel
NLVVHC1GT125DT1G*	TSOP-5	W1R	Q4	3000 / Tape \& Reel
MC74VHC1G125P5T5G	SOT-953	T	Q2	8000 / Tape \& Reel
MC74VHC1GT125P5T5G (In Development)	SOT-953	TBD	Q2	8000 / Tape \& Reel
MC74VHC1G125MU1TCG (In Development)	UDFN6, $1.45 \times 1.0,0.5 \mathrm{P}$	TBD	Q4	3000 / Tape \& Reel
MC74VHC1GT125MU1TCG	UDFN6, $1.45 \times 1.0,0.5 \mathrm{P}$	D	Q4	3000 / Tape \& Reel
MC74VHC1GT125MU2TCG	UDFN6, $1.2 \times 1.0,0.4 \mathrm{P}$	7	Q4	3000 / Tape \& Reel
MC74VHC1G125MU3TCG (In Development)	UDFN6, $1.0 \times 1.0,0.35 \mathrm{P}$	TBD	Q4	3000 / Tape \& Reel
MC74VHC1GT125MU3TCG	UDFN6, $1.0 \times 1.0,0.35 \mathrm{P}$	L	Q4	3000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Pin 1 Orientation in Tape and Reel
Direction of Feed

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE

DIM	MILLIMETERS	
	MIN	MAX
A	0.90	1.10
A1	0.01	0.10
\mathbf{b}	0.25	0.50
\mathbf{c}	0.10	0.26
\mathbf{D}	2.85	3.15
E	2.50	3.00
E1	1.35	1.65
\mathbf{e}	0.95 BSC	
\mathbf{L}	0.20	0.60
\mathbf{M}	0°	

RECOMMENDED SOLDERING FOOTPRINT*

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
$M \quad=$ Date Code

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " - ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON66279G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red
DESCRIPTION:	SC-74A	PAGE 1 OF 1

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

UDFN6, 1.2x1.0, 0.4P
CASE 517AA-01
ISSUE D
DATE 03 SEP 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM TERMINAL
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

| | MILLIMETERS | |
| :---: | :---: | :---: |
| DIM | MIN | MAX |
| A | 0.45 | 0.55 |
| A1 | 0.00 | 0.05 |
| A3 | 0.127 | |
| REF | | |
| b | 0.15 | |
| D | 1.20 | |
| BSC | | |
| E | 1.00 | |
| BSC | | |
| e | 0.40 | |
| BSC | | |
| L | 0.30 | 0.40 |
| L1 | 0.00 | 0.15 |
| L2 | 0.40 | 0.50 |

Side View (Optional)

GENERIC
MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

MOUNTING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON22068D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 6 PIN UDFN, 1.2X1.0, 0.4P | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

UDFN6, 1.45x1.0, 0.5P CASE 517AQ

ISSUE O
DATE 15 MAY 2008

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
CONTROLLING DIMENSION: MILLIMETERS
2. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

DETAIL B OPTIONAL CONSTRUCTIONS

MOUNTING FOOTPRINT

DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC

MARKING DIAGRAM*

X = Specific Device Code
M = Date Code
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON30313E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6, 1.45x1.0, 0.5P | PAGE 1 OF 1 |

[^0]UDFN6, 1x1, 0.35P
CASE 517BX
ISSUE O
DATE 18 MAY 2011

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " $\mathrm{\nabla}$ ", may or may not be present. Some products may not follow the Generic Marking.

| DOCUMENT NUMBER: | 98AON56787E | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. | |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | UDFN6, 1x1, 0.35P | | PAGE 1 OF 1 |

[^1]SCALE 4:1

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME

Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

| | MILLIMETERS | | |
| :---: | :---: | :---: | :---: |
| DIM | MIN | NOM | MAX |
| A | 0.34 | 0.37 | 0.40 |
| b | 0.10 | 0.15 | 0.20 |
| C | 0.07 | 0.12 | 0.17 |
| D | 0.95 | 1.00 | 1.05 |
| E | 0.75 | 0.80 | 0.85 |
| e | 0.35 BSC | | |
| HE 2 | 0.95 | 1.00 | 1.05 |
| L | 0.175 REF | | |
| L2 | 0.05 | 0.10 | 0.15 |
| L3 | --- | --- | 0.15 |

GENERIC MARKING DIAGRAM*

X = Specific Device Code
M = Month Code
*This information is generic. Please refer to device data sheet for actual part marking.
Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98AON26457D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOT-953 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: onsemi and OnSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

[^1]: onsemi and OnSemil are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

