ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Noninverting 3-State Buffer

MC74VHC1G126, MC74VHC1GT126

The MC74VHC1G126 / MC74VHC1GT126 is a single gate noninverting 3-state buffer in tiny footprint packages. The MC74VHC1G126 has CMOS-level input thresholds while the MC74VHC1GT126 has TTL-level input thresholds.

The internal circuit is composed of three stages, including a buffered 3-state output which provides high noise immunity and stable output.

The input structures provide protection when voltages up to 5.5 V are applied, regardless of the supply voltage. This allows the device to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{CC} = 0$ V and when the output voltage exceeds V_{CC} . These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- $\bullet\,$ Designed for 2.0 V to 5.5 V V_{CC} Operation
- 3.5 ns t_{PD} at 5 V (typ)
- Inputs/Outputs Over-Voltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Source/Sink 8 mA at 3.0 V
- Available in SC-88A, SC-74A, TSOP-5, SOT-553, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

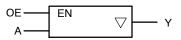
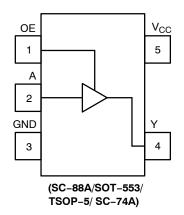


Figure 1. Logic Symbol



www.onsemi.com

		MARKING DIAGRAMS
	SC-88A DF SUFFIX CASE 419A	□ □ □ ×× M• ○ •
	SC-74A DBV SUFFIX CASE 318BQ	□ □ ××× M• • •
5 1	TSOP-5 DT SUFFIX CASE 483	5 XX M• • •
2.2.2.2 2.2.2	SOT-553 XV5 SUFFIX CASE 463B	XX M• • •
	SOT-953 P5 SUFFIX CASE 527AE	
	UDFN6 1.45 x 1.0 CASE 517AQ	● XM
Ŷ	UDFN6 1.2 x 1.0 CASE 517AA	× M ●
Ŷ	UDFN6 1.0 x 1.0 CASE 517BX	1 ° × M
XX M	= Specific Device = Date Code* = Pb-Free Packa	
(Note: Mic	rodot may be in eithe	r location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 8 of this data sheet.

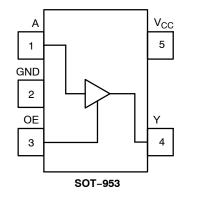
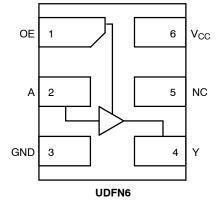



Figure 2. Pinout (Top View)

PIN ASSIGNMENT

(SC-88A/SOT-553/ TSOP-5/SC-74A)

Pin	Function
1	OE
2	A
3	GND
4	Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	А
2	GND
3	OE
4	Y
5	V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	OE
2	A
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

Inp	Output	
OE	Α	Y
Н	L	L
Н	Н	Н
L	Х	Z

X = Don't Care

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit	
V _{CC}	DC Supply Voltage TS SC-74A, SC-88A, UDFN6,	OP–5, SC–88A (NLV) SOT–553, SOT–953	-0.5 to +7.0 -0.5 to +6.5	V
V _{IN}	DC Input Voltage TS SC-74A, SC-88A, UDFN6,	OP–5, SC–88A (NLV) SOT–553, SOT–953	-0.5 to +7.0 -0.5 to +6.5	V
V _{OUT}	TSOP-5, SC-88A (NLV) Tri	e (High or Low State) –State Mode (Note 1) wn Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	V
	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 Tri	e (High or Low State) –State Mode (Note 1) wn Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +6.5 -0.5 to +6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
Ι _{ΟΚ}	DC Output Diode Current	-20	mA	
I _{OUT}	DC Output Source/Sink Current		±25	mA
_{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
Τ _J	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88A SC-74A SOT-553 SOT-953 UDFN6	377 320 324 254 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A SC-74A SOT-553 SOT-953 UDFN6	332 390 386 491 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating O	xygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model harged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Applicable to devices with outputs that may be tri-stated.
Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

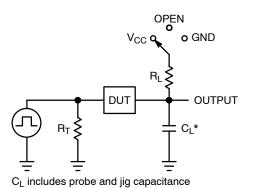
Symbol		Characteristics	Min	Мах	Unit
V _{CC}	Positive DC Supply Voltage		2.0	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	TSOP-5, SC-88A (NLV)	0	V _{CC}	V
	DC Output Voltage	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Ran	ge	-55	+125	°C
t _r , t _f	Input Rise and Fall Time	TSOP-5, SC-88A (NLV) V _{CC} = 3.0 V to 3.6 V V _{CC} = 4.5 V to 5.5 V	0 0	100 20	ns/V
	Input Rise and Fall Time	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 $V_{CC} = 2.0 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 3.0 V to 3.6 V$ $V_{CC} = 4.5 V to 5.5 V$	0 0 0 0	20 20 10 5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (MC74VHC1G126)

		Test	Vcc	٦	A = 25℃	C	$-40^\circ C \leq T_A \leq 85^\circ C$		$-55^\circ C \leq T_A \leq 125^\circ C$		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	High-Level Input		2.0	1.5	-	-	1.5	-	1.5	-	V
	Voltage		3.0	2.1	-	-	2.1	-	2.1	-	1
			4.5	3.15	-	-	3.15	-	3.15	-	1
			5.5	3.85	-	-	3.85	-	3.85	-	1
V_{IL}	Low-Level Input		2.0	-	-	0.5	-	0.5	-	0.5	V
	Voltage		3.0	-	-	0.9	-	0.9	-	0.9	1
			4.5	-	-	1.35	-	1.35	-	1.35	1
			5.5	-	-	1.65	-	1.65	-	1.65	
V _{OH}	High-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -4 \ m\text{A} \\ I_{OH} = -8 \ m\text{A} \end{array}$	2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5 –		1.9 2.9 4.4 2.48 3.80	- - - -	1.9 2.9 4.4 2.34 3.66	- - - -	V
V _{OL}	Low-Level Output Voltage		2.0 3.0 4.5 3.0 4.5	- - - -	0.0 0.0 0.0 - -	0.1 0.1 0.36 0.36	- - - -	0.1 0.1 0.44 0.44	- - - -	0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	2.0 to 5.5	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{OZ}	3-State Output Leakage Current	V _{OUT} = 0 V to 5.5 V	5.5	-	-	±0.25	-	±2.5	-	±2.5	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	I	1.0	-	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	-	-	1.0	-	20	-	40	μΑ

DC ELECTRICAL CHARACTERISTICS (MC74VHC1GT126)

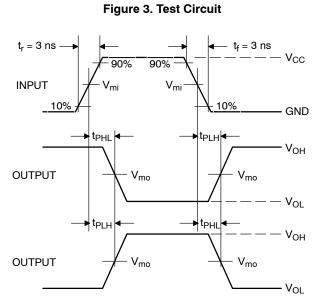

		Test	v _{cc}	T _A = 25°C			$-40^\circ C \le T_A \le 85^\circ C$		$-55^\circ C \leq T_A \leq 125^\circ C$		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V_{IH}	High-Level Input		2.0	1.0	_	-	1.0	-	1.0	-	V
	Voltage		3.0	1.4	-	-	1.4	-	1.4	-	1
			4.5	2.0	-	-	2.0	-	2.0	-	1
			5.5	2.0	-	-	2.0	-	2.0	-	1
VIL	Low-Level Input		2.0	-	_	0.28	-	0.28	-	0.28	V
	Voltage		3.0	-	_	0.45	-	0.45	-	0.45	1
			4.5	-	-	0.8	-	0.8	-	0.8	1
			5.5	-	-	0.8	-	0.8	-	0.8	
V _{OH}	High-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -4 \ m\text{A} \\ I_{OH} = -8 \ m\text{A} \end{array}$	2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5 –		1.9 2.9 4.4 2.48 3.80	- - - -	1.9 2.9 4.4 2.34 3.66	- - - -	V
V _{OL}	Low-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 50 \ \mu\text{A} \\ I_{OL} = 50 \ \mu\text{A} \\ I_{OL} = 50 \ \mu\text{A} \\ I_{OL} = 4 \ \text{mA} \\ I_{OL} = 8 \ \text{mA} \end{array}$	2.0 3.0 4.5 3.0 4.5	- - - -	0.0 0.0 0.0 - -	0.1 0.1 0.36 0.36		0.1 0.1 0.44 0.44	- - - -	0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Cur- rent	V _{IN} = 5.5 V or GND	2.0 to 5.5	-	-	±0.1	-	±1.0	_	±1.0	μΑ
I _{OZ}	3-State Output Leakage Current	V _{OUT} = 0 V to 5.5 V	5.5	-	-	±0.25	-	±2.5	-	±2.5	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	-	-	1.0	-	20	_	40	μΑ
I _{CCT}	Increase in Quies- cent Supply Current per Input Pin	One Input: V _{IN} = 3.4 V; Other Input at V _{CC} or GND	5.5	-	-	1.35	_	1.5	-	1.65	mA

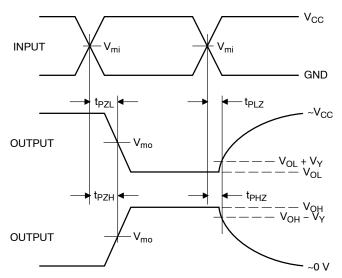
			T _A = 25°C			$-40^{\circ}C \le T_A \le 85^{\circ}C$		$-55^\circ C \leq T_A \leq 125^\circ C$		
Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Max	Unit
Propagation Delay,	C _L = 15 pF	3.0 to 3.6	-	4.5	8.0	-	9.5	-	12.0	ns
A to Y (Figures 3 and 4)	C _L = 50 pF	1	-	6.4	11.5	-	13.0	-	16.0	1
	C _L = 15 pF	4.5 to 5.5	-	3.5	5.5	-	6.5	-	8.5	1
	C _L = 50 pF	1	-	4.5	7.5	-	8.5	-	10.5	1
Output Enable	C _L = 15 pF	3.0 to 3.6	-	4.5	8.0	-	9.5	-	11.5	ns
Time, OE to Y (Figures 3 and 4)	C _L = 50 pF	1	-	6.4	11.5	-	13.0	-	15.0	1
	C _L = 15 pF	4.5 to 5.5	-	3.5	5.1	-	6.0	-	8.5	
	C _L = 50 pF	1	-	4.5	7.1	-	8.0	-	10.5	1
Output Disable	C _L = 15 pF	3.0 to 3.6	-	6.5	9.7	-	11.5	-	14.5	ns
(Figures 3 and 4)	C _L = 50 pF	1	-	8.0	13.2	-	15.0	-	18.0	1
	C _L = 15 pF	4.5 to 5.5	-	4.8	6.8	-	8.0	-	10.0	
	C _L = 50 pF		-	7.0	8.8	-	10.0	-	12.0	
Input Capacitance			-	4.0	10	-	10	-	10	pF
Output Capacitance	Output in High Impedance State		-	6.0	-	-	_	_	_	pF
	Propagation Delay, A to Y (Figures 3 and 4) Output Enable Time, OE to Y (Figures 3 and 4) Output Disable Time, OE to Y (Figures 3 and 4) Input Capacitance	$\begin{array}{c} \mbox{Propagation Delay,} \\ A to Y \\ (Figures 3 and 4) \\ \hline C_L = 50 \ pF \\ \hline $	$\begin{array}{c} \mbox{Propagation Delay,} \\ A \ to \ Y \\ (Figures \ 3 \ and \ 4) \\ \hline \\ \hline \\ (Figures \ 3 \ and \ 4) \\ \hline \\ \hline \\ \hline \\ Output \ Enable \\ Time, \ OE \ to \ Y \\ (Figures \ 3 \ and \ 4) \\ \hline \\ $	ParameterConditions $V_{CC}(V)$ MinPropagation Delay, A to Y (Figures 3 and 4) $C_L = 15 pF$ $3.0 to 3.6$ $C_L = 50 pF$ $ C_L = 50 pF$ $L = 50 pF$ $L = 50 pF$ $ C_L = 50 pF$ $L = 50 pF$ $ -$ Output Enable Time, OE to Y (Figures 3 and 4) $C_L = 15 pF$ $3.0 to 3.6$ $C_L = 50 pF$ $-$ Output Disable Time, OE to Y (Figures 3 and 4) $C_L = 15 pF$ $4.5 to 5.5$ $-$ Output Disable Time, OE to Y (Figures 3 and 4) $C_L = 15 pF$ $3.0 to 3.6$ $-$ Output Disable Time, OE to Y (Figures 3 and 4) $C_L = 15 pF$ $3.0 to 3.6$ $-$ Output Disable Time, OE to Y (Figures 3 and 4) $C_L = 15 pF$ $4.5 to 5.5$ $-$ Input Capacitance $C_L = 50 pF$ $4.5 to 5.5$ $-$ Input Capacitance $Output in$ High Impedance $ -$	$\begin{array}{ c c c c } \mbox{Parameter} & \mbox{Conditions} & \mbox{V}_{CC}(V) & \mbox{Min} & \mbox{Typ} \\ \mbox{Propagation Delay, A to Y} \\ \mbox{A to Y} \\ \mbox{(Figures 3 and 4)} & \mbox{C}_L = 15 \mbox{ PF} & \mbox{3.0 to 3.6} & $	$\begin{array}{ c c c c } \mbox{Parameter} & \mbox{Conditions} & \mbox{V}_{CC}(V) & \mbox{Min} & \mbox{Typ} & \mbox{Max} \\ \mbox{Propagation Delay, A to Y} & \label{eq:classical} \\ \mbox{Propagation Delay, A to Y} & \label{eq:classical} \\ \mbox{A to Y} & \label{eq:classical} \\ \mbox{CL} = 15 \mbox{pF} & \mbox{A to S of 0.6} & \mbox{I} & \m$	Parameter Conditions $V_{CC}(V)$ Min Typ Max Min Propagation Delay, A to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 \text{to } 3.6$ $ 4.5$ 8.0 $ C_L = 50 \text{pF}$ $C_L = 50 \text{pF}$ $ 6.4$ 11.5 $ C_L = 15 \text{pF}$ $4.5 \text{to } 5.5$ $ 3.5$ 5.5 $ Output Enable$ Time, OE to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 \text{to } 3.6$ $ 4.5$ 8.0 $ Output Enable$ Time, OE to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 \text{to } 3.6$ $ 4.5$ 8.0 $ Output Disable$ Time, OE to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 \text{to } 3.6$ $ 4.5$ 9.7 $ Output Disable$ Time, OE to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 \text{to } 3.6$ $ 4.8$ 6.8 $ Output Disable$ Time, OE to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $4.5 \text{to } 5.5$ $ 4.8$ 6.8 $ O_L = 50 \text$	Parameter Conditions $V_{CC}(V)$ Min Typ Max Min Max Propagation Delay, A to Y (Figures 3 and 4) $C_L = 15 \text{pF}$ $3.0 to 3.6$ $ 4.5$ 8.0 $ 9.5$ $C_L = 50 \text{pF}$ $C_L = 50 \text{pF}$ $ 6.4$ 11.5 $ 6.5$ $C_L = 50 \text{pF}$ $4.5 to 5.5$ $ 3.5$ 5.5 $ 6.5$ $Output Enable$ $C_L = 15 \text{pF}$ $3.0 to 3.6$ $ 4.5$ 8.0 $ 9.5$ Output Enable $C_L = 50 \text{pF}$ $3.0 to 3.6$ $ 4.5$ 8.0 $ 9.5$ $C_L = 50 \text{pF}$ $C_L = 50 \text{pF}$ $4.5 to 5.5$ $ 6.0$ $ 13.0$ $Output Disable$ $C_L = 15 \text{pF}$ $4.5 to 5.5$ $ 4.5$ 9.7 $ 11.5$ $Min O$ $C_L = 15 \text{pF}$ $3.0 to 3.6$ $ 6.5$ 9.7 $ 11.5$ $Min O$	$\begin{array}{ c c c c } \hline Parameter & Conditions & V_{CC}(V) & Min & Typ & Max & Min & Max & Min \\ \hline Propagation Delay, A to Y (Figures 3 and 4) & C_L = 15 pF & 3.0 to 3.6 & -4 & 4.5 & 8.0 & & 9.5 & & 6.7 \\ \hline C_L = 50 pF & & 6.4 & 11.5 & & 13.0 & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$\begin{array}{ c c c c c c } \hline Parameter & Conditions & V_{CC}(V) & Min & Typ & Max & Min & Max & Min & Max \\ \hline Propagation Delay, A to Y (Figures 3 and 4) & C_L = 15 pF & 3.0 to 3.6 & - & 4.5 & 8.0 & - & 9.5 & - & 12.0 \\ \hline C_L = 50 pF & - & - & 6.4 & 11.5 & - & 13.0 & - & 16.0 \\ \hline C_L = 50 pF & 4.5 to 5.5 & 5.5 & 5.5 & - & 6.5 & - & 8.5 \\ \hline C_L = 50 pF & - & - & 4.5 & 8.0 & - & 8.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 4.5 & 8.0 & - & 9.5 & - & 11.5 \\ \hline C_L = 50 pF & - & - & 4.5 & 8.0 & - & 9.5 & - & 11.5 \\ \hline C_L = 50 pF & - & - & 6.4 & 11.5 & - & 13.0 & - & 11.5 \\ \hline C_L = 50 pF & - & - & 6.4 & 11.5 & - & 13.0 & - & 15.0 \\ \hline C_L = 50 pF & - & - & 6.5 & 5.1 & - & 6.0 & - & 15.0 \\ \hline C_L = 50 pF & - & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 6.5 & 9.7 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 8.0 & 13.2 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 8.0 & 13.2 & - & 11.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & 8.0 & 13.2 & - & 10.5 & - & 10.5 \\ \hline C_L = 50 pF & - & - & - & - & - & 10.5 \\ \hline Dutput Capacitance & - & - & - & - & - & - & - & - & - \\ \hline Dutput Capacitance & - & - & - & - & - & - & - & - & - & $

AC ELECTRICAL CHARACTERISTICS

		Typical @ 25°C, V_{CC} = 5.0 V	
C _{PD}	Power Dissipation Capacitance (Note 5)	8.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.




 R_T is Z_{OUT} of pulse generator (typically 50 Ω)

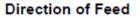
f = 1 MHz

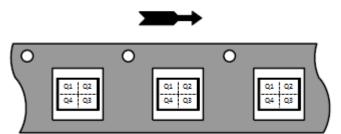
Test	Switch Position	C _L , pF	R_{L}, Ω
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table	Х
t _{PLZ} / t _{PZL}	V _{CC}		1 k
t _{PHZ} / t _{PZH}	GND		1 k

X = Don't Care

Figure 4. Switching Waveforms

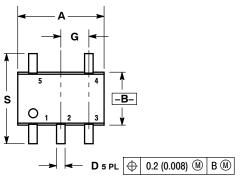
		V _{mo} , V		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

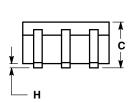

ORDERING INFORMATION

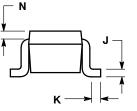

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
M74VHC1G126DFT1G	SC-88A	W2	Q2	3000 / Tape & Reel
M74VHC1G126DFT2G	SC-88A	W2	Q4	3000 / Tape & Reel
NLVVHC1G126DFT1G*	SC-88A	W2	Q2	3000 / Tape & Reel
NLVVHC1G126DFT2G*	SC-88A	W2	Q4	3000 / Tape & Reel
M74VHC1GT126DF1G	SC-88A	W3	Q2	3000 / Tape & Reel
M74VHC1GT126DF2G	SC-88A	W3	Q4	3000 / Tape & Reel
NLVVHC1GT126DF2G*	SC-88A	W3	Q4	3000 / Tape & Reel
NLVVHC1GT126DF1G*	SC-88A	W3	Q2	3000 / Tape & Reel
MC74VHC1G126DBVT1G	SC-74A	W2	Q4	3000 / Tape & Reel
MC74VHC1GT126DBVT1G	SC-74A	W3	Q4	3000 / Tape & Reel
M74VHC1G126DTT1G	TSOP-5	W2	Q4	3000 / Tape & Reel
M74VHC1GT126DT1G	TSOP-5	W3	Q4	3000 / Tape & Reel
NLVVHC1GT126DT1G*	TSOP-5	W3R	Q4	3000 / Tape & Reel
MC74VHC1G126XV5T2G (In Development)	SOT-553	TBD	Q4	4000 / Tape & Reel
MC74VHC1GT126XV5T2G (In Development)	SOT-553	TBD	Q4	4000 / Tape & Reel
MC74VHC1G126P5T5G	SOT-953	J	Q2	8000 / Tape & Reel
MC74VHC1GT126P5T5G	SOT-953	R	Q2	8000 / Tape & Reel
MC74VHC1G126MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
MC74VHC1GT126MU1TCG	UDFN6, 1.45 x 1.0, 0.5P	T (Rotated 270° CW)	Q4	3000 / Tape & Reel
MC74VHC1GT126MU2TCG	UDFN6, 1.2 x 1.0, 0.4P	9	Q4	3000 / Tape & Reel
MC74VHC1G126MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel
MC74VHC1GT126MU3TCG	UDFN6, 1.0 x 1.0, 0.35P	R (Rotated 180° CW)	Q4	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

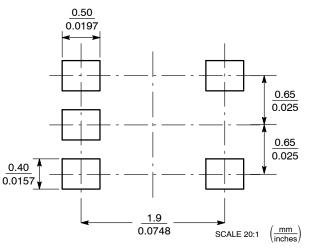

Pin 1 Orientation in Tape and Reel





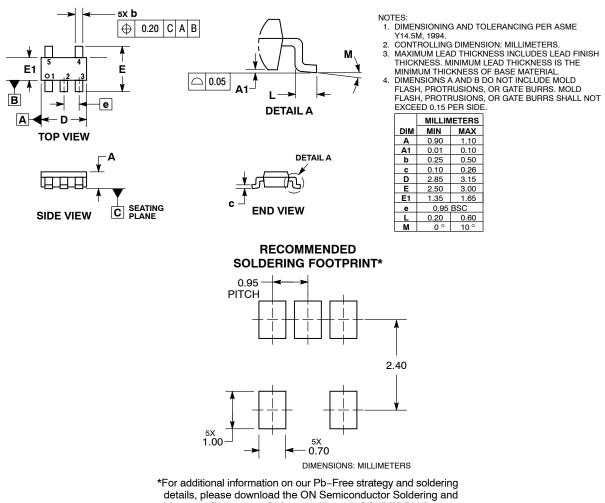
PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L



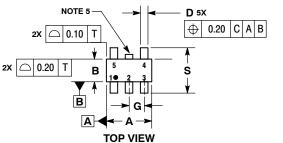
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
Κ	0.004	0.012	0.10	0.30	
Ν	0.008 REF		0.20	REF	
S	0.079	0.087	2.00	2.20	


SOLDER FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

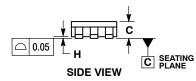
PACKAGE DIMENSIONS


SC-74A CASE 318BQ **ISSUE B**

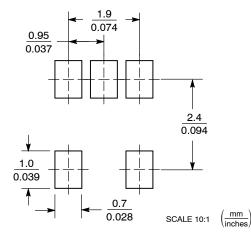
Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

TSOP-5 CASE 483-02 **ISSUE M**

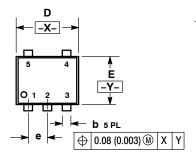


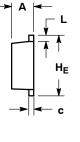
DETAIL Z


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 15 PER SIDE. DIMENSION A.
 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
С	0.90	1.10		
D	0.25	0.50		
G	0.95 BSC			
н	0.01	0.10		
J	0.10	0.26		
к	0.20	0.60		
Μ	0 °	10 °		
S	2.50	3.00		

SOLDERING FOOTPRINT*

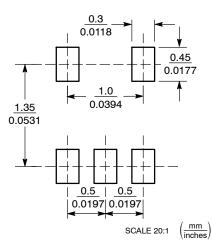

END VIEW



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

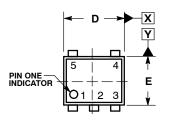
PACKAGE DIMENSIONS

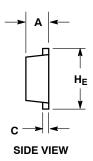
SOT-553, 5 LEAD CASE 463B **ISSUE C**

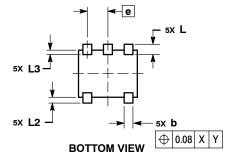


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. INCHES

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BSC)
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

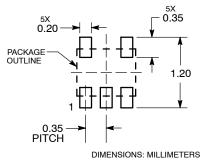

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

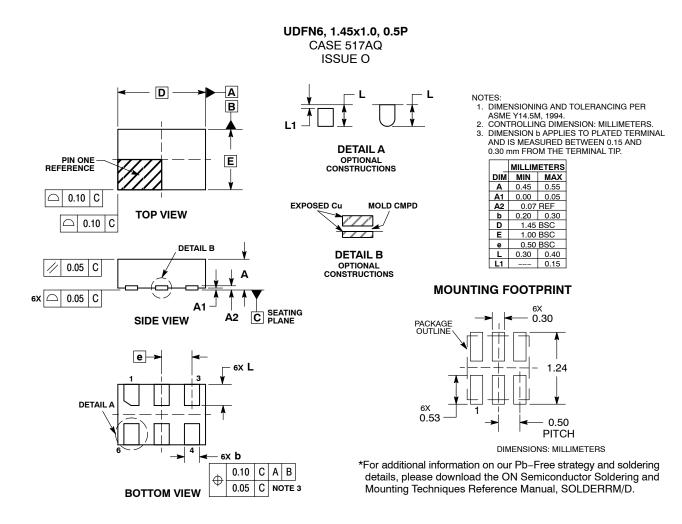

PACKAGE DIMENSIONS

SOT-953 CASE 527AE ISSUE E

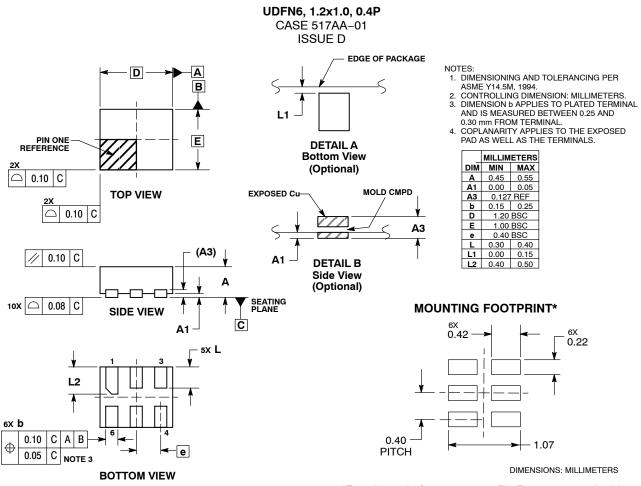
TOP VIEW



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

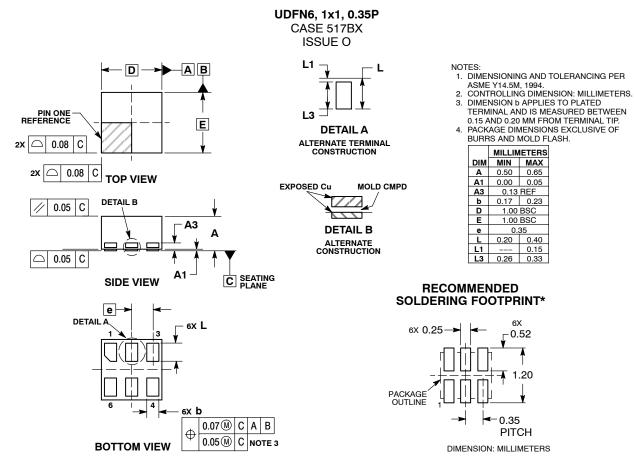

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.34	0.37	0.40		
b	0.10	0.15	0.20		
С	0.07	0.12	0.17		
D	0.95	1.00	1.05		
Е	0.75	0.80	0.85		
e	0.35 BSC				
ΗE	0.95	1.00	1.05		
L	0.175 REF				
L2	0.05	0.10	0.15		
L3			0.15		

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS



PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support or any theorices intended for implantation in the human body. Should Buyer purchase or use ON Smiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equa

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Buffers & Line Drivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 5962-8982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5-7 TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G