MC74VHC240

Octal Bus Buffer/Line Driver Inverting with 3-State Outputs

The MC74VHC240 is an advanced high speed CMOS octal bus buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The MC74VHC240 is an inverting 3-state buffer, and has two active-low output enables. This device is designed to drive bus lines or buffer memory address registers.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V , allowing the interface of 5 V systems to 3 V systems.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.6 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V ${ }_{\text {OLP }}=0.9 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 120 FETs or 30 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

OEA	$1 \bullet$	20	V_{CC}
A1	2	19	$]$ OEB
YB4	3	18	YA1
A2	4	17	B4
YB3	5	16	YA2
A3	6	15	B3
YB2	7	14	YA3
A4	8	13	B2
YB1	9	12	YA4
GND	10	11	B1

Figure 1. Pin Assignment

ON Semiconductor ${ }^{\text {TM }}$

http://onsemi.com

VHC240	$=$ Specific Device Code
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	$=$ Year
WW, W	$=$ Work Week
G or •	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC240DWR2G	SOIC-20	1000 Units/Reel
MC74VHC240DTR2G	TSSOP-20	2500 Units/Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

FUNCTION TABLE

INPUTS		OUTPUTS
OEA, OEB	A, B	YA, YB
L	L	H
L	H	L
H	X	Z

Figure 1. LOGIC DIAGRAM
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to + 7.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IK }}$	Input Diode Current	-20	mA
lok	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, SOIC Packages \dagger TSSOP Package \dagger	$\begin{aligned} & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.
\dagger Derating - SOIC Packages: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$V_{\text {in }}$	DC Input Voltage	0	5.5	V
$V_{\text {out }}$	DC Output Voltage	0	$\mathrm{V}_{\text {CC }}$	V
T_{A}	Operating Temperature, All Package Types	-40	+ 85	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}^{\text {f }}$	$\begin{array}{ll}\text { Input Rise and Fall Time } & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}\end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	v_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } \\ 5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ v_{C C} \times 0.7 \end{gathered}$			$\begin{gathered} 1.50 \\ \mathrm{~V}_{\mathrm{CC}} \times 0.7 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } \\ 5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ v_{C C} \times 0.3 \end{gathered}$		$\begin{gathered} 0.50 \\ v_{C C} \times 0.3 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}^{2}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}^{2}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \\ \mathrm{l}_{\mathrm{OL}} & =4 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$
loz	Maximum Three-State Leakage Current	$\begin{aligned} & V_{\text {in }}=V_{\text {IL }} \text { or } V_{\text {IH }} \\ & V_{\text {out }}=V_{\text {CC }} \text { or } G N D \end{aligned}$	5.5			± 0.25		± 2.5	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, A to $\overline{Y A}$ or B to $\overline{Y B}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.3 \\ & 7.8 \end{aligned}$	$\begin{gathered} \hline 7.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	
$\begin{aligned} & \hline \text { tpZL, } \\ & \text { t }_{\text {PZH }} \end{aligned}$	Output Enable Time $\overline{O E A}$ to $\overline{Y A}$ or $\overline{O E B}$ to $\overline{Y B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & \hline 6.6 \\ & 9.1 \end{aligned}$	$\begin{aligned} & \hline 10.6 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 12.5 \\ & 16.0 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.7 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 9.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	
$\begin{aligned} & \text { tPLZ, } \\ & t_{\text {PHZ }} \end{aligned}$	Output Disable Time סEA to YA or $\overline{O E B}$ to $\overline{Y B}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		10.3	14.0	1.0	16.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		6.7	9.2	1.0	10.5	
tosth, toshl	Output to Output Skew	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \text { (Note 1.) } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1.5		1.5	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \text { (Note 1.) } \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1.0		1.0	
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance				4	10		10	pF
Cout	Maximum Three-State Output Capacitance (Output in High-Impedance State)				6				pF

		Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2.)	17	pF

1. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLL }}\right|$.
2. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per bit). $\mathrm{C}_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s, C_{L}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

		$\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathbf{C}$		
Symbol	Parameter	$\mathbf{T y p}$	Max	
$\mathrm{V}_{\mathrm{OLP}}$	Quiet Output Maximum Dynamic V_{OL}	0.6	0.9	V
$\mathrm{~V}_{\mathrm{OLV}}$	Quiet Output Minimum Dynamic V_{OL}	-0.6	-0.9	V
$\mathrm{~V}_{\mathrm{IHD}}$	Minimum High Level Dynamic Input Voltage		3.5	V
$\mathrm{~V}_{\mathrm{ILD}}$	Maximum Low Level Dynamic Input Voltage		1.5	V

SWITCHING WAVEFORMS

Figure 2.

TEST CIRCUITS

*Includes all probe and jig capacitance

*Includes all probe and jig capacitance

Figure 4. Test Circuit
Figure 5. Test Circuit

Figure 6. Input Equivalent Circuit

SCALE 1：1

Q	0.25 （M）	T	A（S）	B（S）

RECOMMENDED SOLDERING FOOTPRINT＊

＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

NOTES：
1．DIMENSIONS ARE IN MILLIMETERS．
2．INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14．5M， 1994
3．DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4．MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5．DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION．ALLOWABLE PROTRUSION
PROTRUSION．ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF B
SHALL BE 0．13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
DIMENSION AT MAXIMUM MATERIAL
CONDITION．

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
0	0°	7°

GENERIC
 MARKING DIAGRAM＊
 20日月日日月日日月日

XXXXX＝Specific Device Code
A＝Assembly Location
WL＝Wafer Lot
YY＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-$ Free indicator，＂ G ＂or microdot＂$\stackrel{ }{ }$＂， may or may not be present．

| DOCUMENT NUMBER： | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－20 WB | PAGE 1 OF 1 |

[^0]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.3	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LXV200-024SW 74AUP2G34FW3-7 HEF4043BP PI74FCT3244L MC74HCT365ADTR2G Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB NL17SZ07P5T5G NLU1GT126AMUTCG 74AUP1G17FW5-7 74LVC2G17FW4-7 CD4502BE 59628982101PA 5962-9052201PA 74LVC1G125FW4-7 NL17SH17P5T5G NL17SH125P5T5G NLV37WZ07USG RHRXH162244K1 74AUP1G34FW5-7 74AUP1G07FW5-7 74LVC2G126RA3-7 NLX2G17CMUTCG 74LVCE1G125FZ4-7 Le87501NQC 74AUP1G126FW5$\underline{7}$ TC74HC4050AP(F) 74LVCE1G07FZ4-7 NLX3G16DMUTCG NLX2G06AMUTCG NLVVHC1G50DFT2G NLU2G17AMUTCG LE87100NQC LE87290YQC LE87290YQCT LE87511NQC LE87511NQCT LE87557NQC LE87557NQCT LE87614MQC $\underline{\text { LE87614MQCT 74AUP1G125FW5-7 NLU2G16CMUTCG MC74LCX244MN2TWG NLV74VHC125DTR2G NL17SG126DFT2G }}$

[^0]: ON Semiconductor and（ON）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^1]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

