MC74VHC245

Octal Bus Buffer/Line Driver

The MC74VHC245 is an advanced high speed CMOS octal bus transceiver fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

It is intended for two-way asynchronous communication between data buses. The direction of data transmission is determined by the level of the DIR input. The output enable pin ($\overline{\mathrm{OE}})$ can be used to disable the device, so that the buses are effectively isolated.

All inputs are equipped with protection circuits against static discharge.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=4.0 \mathrm{~ns}$ (Typ) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}$ (Max) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: $\mathrm{V}_{\text {OLP }}=1.2 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 308 FETs or 77 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

APPLICATION NOTES

- Do not force a signal on an I/O pin when it is an active output, damage may occur.
- All floating (high impedance) input or I/O pins must be fixed by means of pull up or pull down resistors or bus terminator ICs.
- A parasitic diode is formed between the bus and V_{CC} terminals. Therefore, the VHC245 cannot be used to interface 5 V to 3 V systems directly.

ON Semiconductor ${ }^{\text {m }}$
http://onsemi.com

VHC245	$=$ Specific Device Code
A	$=$ Assembly Location
WL, L	$=$ Wafer Lot
Y	$=$ Year
WW, W	$=$ Work Week
G or :	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC245DWG	SOIC-20	38 Units/Rail
MC74VHC245DTG	TSSOP-20	75 Units/Rail
MC74VHC245DWR2G	SOIC-20	1000 Units/Reel
MC74VHC245DTR2G	TSSOP-20	2500 Units/T\&R

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MC74VHC245

Figure 1. LOGIC DIAGRAM

DIR $[$	$1 \bullet$	20] V_{CC}
A1	2	19] $\overline{\mathrm{OE}}$
A2	3	18	B1
A3	4	17	B2
A4	5	16	B3
A5	6	15] ${ }^{\text {4 }}$
A6	7	14	B5
A7 [8	13	B6
A8	9	12	B7
GND [10	11	B8

Figure 2. PIN ASSIGNMENT

FUNCTION TABLE		
Control Inputs		Operation
$\overline{\mathrm{OE}}$	DIR	
L	L	Data Transmitted from Bus B to Bus A
L	H	Data Transmitted from Bus A to Bus B
H	X	Buses Isolated (High-Impedance State)

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input Diode Current	-20	mA
I_{OK}	Output Diode Current	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air \quad SOIC Packages \dagger	500	mW
		450	
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.
†Derating - SOIC Packages: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V	
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	0	5.5	V	
$\mathrm{~V}_{\text {out }}$	DC Output Voltage		0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0	100	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	20	

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } \\ 5.5 \end{gathered}$	$\begin{gathered} 1.50 \\ v_{C C} \times 0.7 \end{gathered}$			$\begin{gathered} 1.50 \\ v_{C C} \times 0.7 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{gathered} 2.0 \\ 3.0 \text { to } \\ 5.5 \end{gathered}$			$\begin{gathered} 0.50 \\ \mathrm{v}_{\mathrm{CC}} \times 0.3 \end{gathered}$		$\begin{gathered} 0.50 \\ V_{C C} \times 0.3 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}^{2}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}^{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \\ \mathrm{I}_{\mathrm{OL}} & =4 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OL}} & =8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=5.5 \mathrm{~V} \text { or GND } \\ & \text { (DIR, } \overline{O E} \text {) } \end{aligned}$	0 to 5.5			± 0.1		± 1.0	$\mu \mathrm{A}$

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
loz	Maximum Three-State Leakage Current	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\text {IH }} \\ & \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D \end{aligned}$	5.5			± 0.25		± 2.5	$\mu \mathrm{A}$
Icc	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	5.5			4.0		40.0	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Maximum Propagation Delay, A to B or B to A	$\mathrm{V}_{C C}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.8 \\ & 8.3 \end{aligned}$	$\begin{gathered} \hline 8.4 \\ 11.9 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 13.5 \end{aligned}$	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}}, \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time OE to A or B	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \hline 8.5 \\ 11.0 \end{gathered}$	$\begin{aligned} & 13.2 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 15.5 \\ & 19.0 \end{aligned}$	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 5.8 \\ & 7.3 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.6 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	
$\begin{aligned} & \text { tpLZ, } \\ & t_{\text {PHZ }} \end{aligned}$	Output Disable Time OE to A or B	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$C_{L}=50 \mathrm{pF}$		11.5	15.8	1.0	18.0	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{aligned}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		7.0	9.7	1.0	11.0	
tosLh, toshL	Output to Output Skew	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	$C_{L}=50 \mathrm{pF}$			1.5		1.5	ns
		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} \\ & \text { (Note 1) } \end{aligned}$	$C_{L}=50 \mathrm{pF}$			1.0		1.0	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance DIR, OE				4	10		10	pF
$\mathrm{C}_{1 / 0}$	Maximum Three-State I/O Capacitance				8				pF

		Typical @ 25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 2)	21	pF

1. Parameter guaranteed by design. $\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\mathrm{PLH}}-\mathrm{t}_{\mathrm{PLHn}}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\mathrm{PHLm}}-\mathrm{t}_{\text {PHLn }}\right|$.
2. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} / 8$ (per bit). C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$V_{\text {OLP }}$	Quiet Output Maximum Dynamic $\mathrm{V}_{\text {OL }}$	0.9	1.2	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	-0.9	-1.2	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		3.5	V
$V_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		1.5	V

MC74VHC245

SWITCHING WAVEFORMS

Figure 3.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 5.

TEST POINT

*Includes all probe and jig capacitance

Figure 6.

Figure 7. EXPANDED LOGIC DIAGRAM

Figure 8. INPUT EQUIVALENT CIRCUIT

Figure 9. BUS TERMINAL EQUIVALENT CIRCUIT

SCALE 1：1

Q	0.25 （M）	T	A（S）	B（S）

RECOMMENDED SOLDERING FOOTPRINT＊

＊For additional information on our Pb －Free strategy and soldering details，please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual，SOLDERRM／D．

NOTES：
1．DIMENSIONS ARE IN MILLIMETERS．
2．INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14．5M， 1994
3．DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION
4．MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5．DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION．ALLOWABLE PROTRUSION
PROTRUSION．ALLOWABLE PROTRUSIO
SHALL BE 0.13 TOTAL IN EXCESS OF B
SHALL BE 0．13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
DIMENSION AT MAXIMUM MATERIAL
CONDITION．

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
b	0.35	0.49
c	0.23	0.32
D	12.65	12.95
E	7.40	7.60
e	1.27 BSC	
H	10.05	10.55
h	0.25	0.75
L	0.50	0.90
0	0°	7°

GENERIC
 MARKING DIAGRAM＊
 20日月日日月日日月日

XXXXX＝Specific Device Code
A＝Assembly Location
WL＝Wafer Lot
YY＝Year
WW＝Work Week
$\mathrm{G} \quad=\mathrm{Pb}-$ Free Package
＊This information is generic．Please refer to device data sheet for actual part marking． $\mathrm{Pb}-$ Free indicator，＂ G ＂or microdot＂$\stackrel{ }{ }$＂， may or may not be present．

| DOCUMENT NUMBER： | 98ASB42343B | Electronic versions are uncontrolled except when accessed directly from the Document Repository．
 Printed versions are uncontroled except when stamped＂CONTROLLED COPY＂in red． |
| ---: | :--- | :--- | :--- |
| DESCRIPTION： | SOIC－20 WB | PAGE 1 OF 1 |

[^0]TSSOP-20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016

SCALE 2:1

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MILLIMETER
2. DIMENSION A DOES NOT INCLUDE MOLD

FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION. SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY
7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.40	6.60	0.252	0.260
B	4.30	4.50	0.169	0.177
C	---	1.20	---	0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
H	0.27	0.3	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

GENERIC MARKING DIAGRAM*

A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, "G" or microdot " \quad ", may or may not be present.

| DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-20 WB | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N PI74LVCC3245AS 5962-8683401DA 5962-8968201LA 5962-8953501KA 5962-86834012A 5962-7802002MFA
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S MM74HC245AMTCX 74LVX245MTC 74ALVC16245MTDX
74LCXR162245MTX 74LVXC3245MTCX 74VHC245M 74VHC245MX JM38510/65553BRA FXL2TD245L10X 74LVC1T45GM,115
74LVC245ADTR2G TC74AC245P(F) SNJ54LS245FK 74LVT245BBT20-13 74AHC245D.112 74AHCT245D. 112
SN74LVCH16952ADGGR CY74FCT16245TPVCT 74AHCT245PW. 118 74LV245DB. 118 74LV245D. 112 74LV245PW. 112
74LVC2245APW. 112 74LVCH245AD. 112 SN75138NSR AP54RHC506ELT-R AP54RHC506BLT-R 74LVCR162245ZQLR
SN74LVCR16245AZQLR MC100EP16MNR4G MC100LVEP16MNR4G 714100R 74HCT643N MC100EP16DTR2G 5962-9221403MRA
74ALVC164245PAG 74FCT16245ATPAG 74FCT16245ATPVG 74FCT16245ETPAG 74FCT245CTSOG

[^0]: ON Semiconductor and（ON）are trademarks of Semiconductor Components Industries，LLC dba ON Semiconductor or its subsidiaries in the United States and／or other countries． ON Semiconductor reserves the right to make changes without further notice to any products herein．ON Semiconductor makes no warranty，representation or guarantee regarding the suitability of its products for any particular purpose，nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit，and specifically disclaims any and all liability，including without limitation special，consequential or incidental damages．ON Semiconductor does not convey any license under its patent rights nor the rights of others．

[^1]: ON Semiconductor and (UN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

