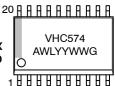
Octal D-Type Flip-Flop with 3-State Output

The MC74VHC574 is an advanced high speed CMOS octal flip-flip with 3-state output fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

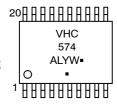
This 8-bit D-type flip-flop is controlled by a clock input and an output enable input. When the output enable input is high, the eight outputs are in a high impedance state.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V, allowing the interface of 5 V systems to 3 V systems.

- High Speed: $f_{max} = 180 \text{ MHz}$ (Typ) at $V_{CC} = 5 \text{ V}$
- Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$
- High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V_{OLP} = 1.2 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 266 FETs or 66.5 Equivalent Gates
- These Devices are Pb-Free and are RoHS Compliant

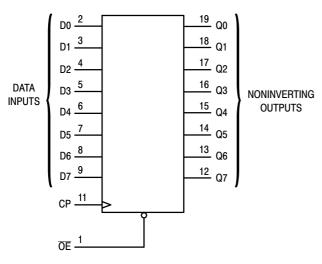

ON Semiconductor

http://onsemi.com


MARKING DIAGRAMS

SOIC-20 DW SUFFIX CASE 751D

VHC574 = Specific Device Code A = Assembly Location


WL, L = Wafer Lot
YY, Y = Year
WW, W = Work Week
G or = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74VHC574DWR2G	SOIC-20	1000 / T&R
MC74VHC574DWG	SOIC-20	38 / Rail
MC74VHC574DTR2G	TSSOP-20	2500 / T&R
MC74VHC574DTG	TSSOP-20	75 / Rail

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ŌĒ [1 ● 20 | V_{CC} 19 🛮 Q0 D0 🛘 2 18 🛮 Q1 D1 [3 17 Q2 D2 [4 D3 🛚 5 16 Q3 15 Q4 D5 [7 14 Q5 13 Q6 D6 🛚 8 12 Q7 D7 🛮 9 11 CP GND [10

Figure 1. LOGIC DIAGRAM

Figure 2. PIN ASSIGNMENT

FUNCTION TABLE

	INPUTS	OUTPUT	
ŌĒ	СР	D	Q
L		Н	Н
L		L	L
L	L, H, 🔪	Х	No Change
Н	X	Х	Z

MAXIMUM RATINGS*

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage		- 0.5 to + 7.0	V
V _{in}	DC Input Voltage		- 0.5 to + 7.0	V
V _{out}	DC Output Voltage	$-$ 0.5 to V_{CC} + 0.5	V	
I _{IK}	Input Diode Current	- 20	mA	
I _{OK}	Output Diode Current	± 20	mA	
l _{out}	DC Output Current, per Pin		± 25	mA
Icc	DC Supply Current, V _{CC} and GND I	Pins	± 75	mA
P _D		SOIC Packages† SSOP Package†	500 450	mW
T _{stg}	Storage Temperature		- 65 to + 150	°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CC}	DC Supply Voltage	2.0	5.5	V
V _{in}	DC Input Voltage	0	5.5	V
V _{out}	DC Output Voltage	0	V_{CC}	V
T _A	Operating Temperature	- 40	+ 85	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 3.3$ $V_{CC} = 5.0$	8V 0 0V 0	100 20	ns/V

DC ELECTRICAL CHARACTERISTICS

		V _{CC}	Voc		T _A = 25°C		$T_A = -40$	0 to 85°C	
Symbol	Parameter	Test Conditions	V	Min	Тур	Max	Min	Max	Unit
V _{IH}	Minimum High-Level Input Voltage		2.0 3.0 to 5.5	1.50 V _{CC} x 0.7			1.50 V _{CC} x 0.7		V
V _{IL}	Maximum Low-Level Input Voltage		2.0 3.0 to 5.5			0.50 V _{CC} x 0.3		0.50 V _{CC} x 0.3	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V
		$V_{in} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -4mA \\ I_{OH} = -8mA$	3.0 4.5	2.58 3.94			2.48 3.80		
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 4mA$ $I_{OL} = 8mA$	3.0 4.5			0.36 0.36		0.44 0.44	

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or $V_{\rm CC}$). Unused outputs must be left open.

[†]Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C

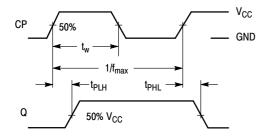
DC ELECTRICAL CHARACTERISTICS

			v _{cc}	V _A = 25°C		T _A = 25°C		T _A = - 40 to 85°C	
Symbol	Parameter	Test Conditions	v	Min	Тур	Max	Min	Max	Unit
I _{in}	Maximum Input Leakage Current	V _{in} = 5.5V or GND	0 to 5.5			± 0.1		± 1.0	μА
l _{OZ}	Maximum Three-State Leakage Current	V _{in} = V _{IL} or V _{IH} V _{out} = V _{CC} or GND	5.5			± 0.25		± 2.5	μА
I _{CC}	Maximum Quiescent Supply Current	V _{in} = V _{CC} or GND	5.5			4.0		40.0	μА

AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0$ ns)

					T _A = 25°C		T _A = - 4	0 to 85°C	
Symbol	Parameter	Test Condi	tions	Min	Тур	Max	Min	Max	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle)	$V_{CC} = 3.3 \pm 0.3 V$	$C_L = 15pF$ $C_L = 50pF$	80 50	125 75	_ _	65 45	_ _	ns
		$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$	130 85	180 115	_	110 75	<u> </u>	
t _{PLH} , t _{PHL}	Maximum Propagation Delay, CP to Q	$V_{CC} = 3.3 \pm 0.3$	$C_L = 15pF$ $C_L = 50pF$		8.5 11.0	13.2 16.7	1.0 1.0	15.5 19.0	ns
		$V_{CC} = 5.0 \pm 0.5 V$	$C_L = 15pF$ $C_L = 50pF$		5.6 7.1	8.6 10.6	1.0 1.0	10.0 12.0	
t _{PZL} , t _{PZH}	Output Enable Time, OE to Q	$\begin{aligned} V_{CC} &= 3.3 \pm 0.3 V \\ R_L &= 1 k \Omega \end{aligned}$	C _L = 15pF C _L = 50pF	_	8.2 10.7	12.8 16.3	1.0 1.0	15.0 18.5	ns
		$V_{CC} = 5.0 \pm 0.5V$ $R_L = 1k\Omega$	C _L = 15pF C _L = 50pF		5.9 7.4	9.0 11.0	1.0 1.0	10.5 12.5	
t _{PLZ} , t _{PHZ}	Output Disable Time, OE to Q	$\begin{aligned} V_{CC} &= 3.3 \pm 0.3 V \\ R_L &= 1 k \Omega \end{aligned}$	C _L = 50pF	_	11.0	15.0	1.0	17.0	ns
		$V_{CC} = 5.0 \pm 0.5V$ $R_L = 1k\Omega$	C _L = 50pF	_	7.1	10.1	1.0	11.5	
t _{OSLH} , t _{OSHL}	Output to Output Skew	V _{CC} = 3.3 ± 0.3V (Note 1)	C _L = 50pF	_	_	1.5	_	1.5	ns
		V _{CC} = 5.0 ± 0.5V (Note 1)	C _L = 50pF	_	_	1.0	_	1.0	ns
C _{in}	Maximum Input Capacitance			_	4	10	_	10	pF
C _{out}	Maximum Three-State Output Capacitance, Output in High-Impedance State			_	6	_	_	_	pF

		Typical @ 25°C, V _{CC} = 5.0V	
C_{PD}	Power Dissipation Capacitance (Note 2)	28	pF


Parameter guaranteed by design. t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|.
 C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/8 (per flip-flop). C_{PD} is used to determine the no-load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

NOISE CHARACTERISTICS (Input $t_r = t_f = 3.0$ ns, $C_L = 50$ pF, $V_{CC} = 5.0$ V)

		T _A = 25°C		
Symbol	Parameter	Тур	Max	Unit
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	0.9	1.2	V
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	- 0.9	- 1.2	V
V _{IHD}	Minimum High Level Dynamic Input Voltage	_	3.5	V
V _{ILD}	Maximum Low Level Dynamic Input Voltage	_	1.5	V

TIMING REQUIREMENTS (Input $t_r = t_f = 3.0 \text{ns}$)

			T _A =	25°C	T _A = - 40 to 85°C	
Symbol	Parameter	Test Conditions	Тур	Limit	Limit	Unit
t _{su}	Minimum Setup Time, D to CP	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		3.5 3.5	3.5 3.5	ns
t _h	Minimum Hold Time, CP to D	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$		1.5 1.5	1.5 1.5	ns
t _w	Minimum Pulse Width, CP	$V_{CC} = 3.3 \pm 0.3 \text{ V}$ $V_{CC} = 5.0 \pm 0.5 \text{ V}$	_ _	5.0 5.0	5.5 5.0	ns

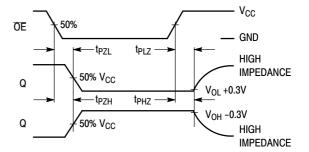
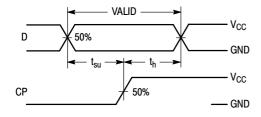
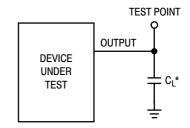




Figure 3. Switching Waveforms

*Includes all probe and jig capacitance

Figure 4.

Figure 5.

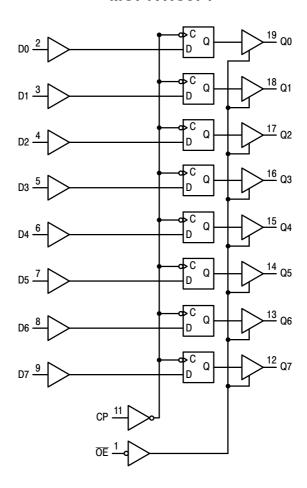
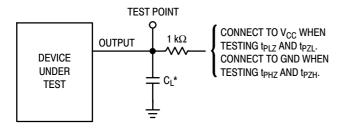
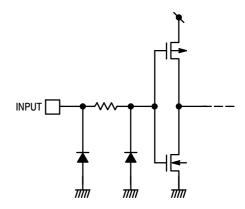



Figure 6. Expanded Logic Diagram

*Includes all probe and jig capacitance



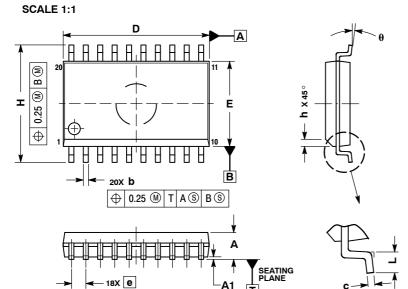
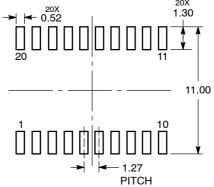

Figure 7. Test Circuit

Figure 8. INPUT EQUIVALENT CIRCUIT

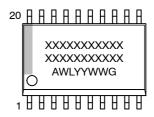
SOIC-20 WB CASE 751D-05 **ISSUE H**

DATE 22 APR 2015



NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES
- PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.


	MILLIMETERS					
DIM	MIN MAX					
Α	2.35	2.65				
A1	0.10	0.25				
b	0.35	0.49				
С	0.23	0.32				
D	12.65	12.95				
E	7.40	7.60				
е	1.27	BSC				
Н	10.05	10.55				
h	0.25	0.75				
L	0.50	0.90				
A	0 °	7 °				

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

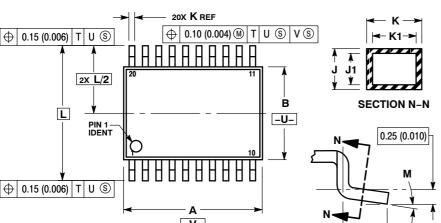
GENERIC MARKING DIAGRAM*

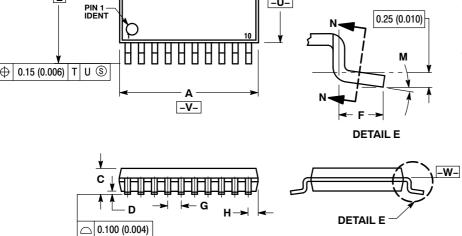
XXXXX = Specific Device Code = Assembly Location

WL = Wafer Lot ΥY = Year WW = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB42343B	Electronic versions are uncontrolled except when accessed directly from the Document Re Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-20 WB		PAGE 1 OF 1		


are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

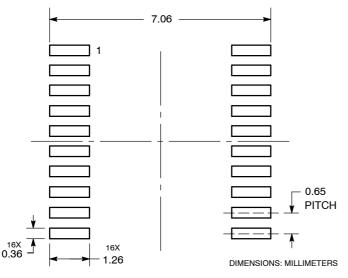

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

TSSOP-20 WB CASE 948E ISSUE D

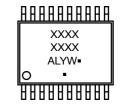
DATE 17 FEB 2016

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION.
- SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
 TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 7. DIMENSION A AND B ARE TO BE
- DETERMINED AT DATUM PLANE -W-


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
J	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
Ĺ	6.40 BSC		0.252 BSC	
M	٥°	80	0.0	80

SOLDERING FOOTPRINT

-T- SEATING

GENERIC MARKING DIAGRAM*

= Assembly Location

= Wafer Lot

= Year

= Work Week

= Pb-Free Package (Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB	•	PAGE 1 OF 1

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product prevent. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer specimications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

ON Semiconductor Website: www.onsemi.com

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below:

1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G