ON Semiconductor

Is Now

onsemi

To learn more about onsemi ${ }^{T M}$, please visit our website at www.onsemi.com

[^0]
MC74VHC595

8-Bit Shift Register with Output Storage Register
 (3-State)

The MC74VHC595 is an advanced high speed 8-bit shift register with an output storage register fabricated with silicon gate CMOS technology.

It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The MC74VHC595 contains an 8-bit static shift register which feeds an 8-bit storage register.

Shift operation is accomplished on the positive going transition of the Shift Clock input (SCK). The output register is loaded with the contents of the shift register on the positive going transition of the Register Clock input (RCK). Since the RCK and SCK signals are independent, parallel outputs can be held stable during the shift operation. And, since the parallel outputs are 3-state, the VHC595 can be directly connected to an 8 -bit bus. This register can be used in serial-to-parallel conversion, data receivers, etc.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7 V , allowing the interface of 5 V systems to 3 V systems.

Features

- High Speed: $\mathrm{f}_{\text {max }}=185 \mathrm{MHz}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High Noise Immunity: $\mathrm{V}_{\mathrm{NIH}}=\mathrm{V}_{\mathrm{NIL}}=28 \% \mathrm{~V}_{\mathrm{CC}}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2 V to 5.5 V Operating Range
- Low Noise: V ${ }_{\text {OLP }}=1.0 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com
MARKING DIAGRAMS

A = Assembly Location
WL = Wafer Lot
Y = Year
W, WW = Work Week
G or • = Pb-Free Package
(Note: Microdot may be in either location)

PIN ASSIGNMENT

QB	$1 \bullet$	16] VCC
QC	2	15] QA
QD	3	14	SI
QE	4	13	OE
QF -	5	12	RCK
QG	6	11	SCK
QH	7	10	\square SCLR
GND [8	9] SQH

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74VHC595DR2G	SOIC-16 (Pb-Free)	 Reel
MC74VHC595DTR2G,	TSSOP-16 NLV74VHC595DTR2G (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MC74VHC595

IEC LOGIC SYMBOL

MC74VHC595

EXPANDED LOGIC DIAGRAM

FUNCTION TABLE

Operation	Inputs					Resulting Function			
	Reset (SCLR)	Serial Input (SI)	Shift Clock (SCK)	Reg Clock (RCK)	Output Enable (OE)	Shift Register Contents	Storage Register Contents	Serial Output (SQH)	Parallel Outputs (QA - QH)
Clear shift register	L	X	X	L, H, \downarrow	L	L	U	L	U
Shift data into shift register	H	D	\uparrow	L, H, \downarrow	L	$\begin{gathered} \mathrm{D} \rightarrow \mathrm{SR}_{\mathrm{A}} ; \\ \mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{SR}_{\mathrm{N}+1} \end{gathered}$	U	$\mathrm{SR}_{\mathrm{G}} \rightarrow \mathrm{SR}_{\mathrm{H}}$	U
Registers remains unchanged	H	X	L, H, \downarrow	X	L	U	**	U	**
Transfer shift register contents to storage register	H	X	L, H, \downarrow	\uparrow	L	U	$\mathrm{SR}_{\mathrm{N}} \rightarrow \mathrm{STR}_{N}$	*	SR_{N}
Storage register remains unchanged	X	X	X	L, H, \downarrow	L	*	U	*	U
Enable parallel outputs	X	X	X	X	L	*	**	*	Enabled
Force outputs into high impedance state	X	X	X	X	H	*	**	*	Z
SR = shift register contents $D=$ data (L, H) logic level $\downarrow=$ High-to-Low $*=$ depends on Reset and Shift Clock inputs STR = storage register contents $U=$ remains unchanged $\uparrow=$ Low-to-High ${ }^{* *}=$ depends on Register Clock input									

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input Diode Current	-20	mA
I_{OK}	Output Diode Current	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 25	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air,	SOIC Packages \dagger TSSOP Package \dagger	500
		450	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating - SOIC Packages: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$V_{\text {in }}$	DC Input Voltage	0	5.5	V
$V_{\text {out }}$	DC Output Voltage	0	$\mathrm{V}_{\text {cc }}$	V
T_{A}	Operating Temperature, All Package Types	-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	$\begin{array}{ll}\text { Input Rise and Fall Time } & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}\end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 100 \\ & 20 \end{aligned}$	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

MC74VHC595

The $\theta_{J A}$ of the package is equal to $1 /$ Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below.
DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 1. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=\leq 85^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=\leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.1 \\ & 3.15 \\ & 3.85 \end{aligned}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage		$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.59 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOH}^{2}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \\ & \hline \end{aligned}$		V
		$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{l}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA} \\ \hline \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{array}{r} 2.34 \\ 3.66 \\ \hline \end{array}$		
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{IOL}_{\mathrm{OL}}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & \hline 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	
IN	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	$\begin{aligned} & \hline 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	5.5			4.0		40.0		40.0	$\mu \mathrm{A}$
loz	Three-State Output Off-State Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	5.5			± 0.25		± 2.5		± 2.5	$\mu \mathrm{A}$

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

| | | Typical @ 25 |
| :--- | :--- | :---: | :---: |
| $\mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0 V}$ | | |
| | pF | |

1. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}}$. C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

NOISE CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)

Symbol	Characteristic	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		Unit
		Typ	Max	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V OL	0.8	1.0	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	-0.8	- 1.0	V
$\mathrm{V}_{\text {IHD }}$	Minimum High Level Dynamic Input Voltage		3.5	V
$\mathrm{V}_{\text {ILD }}$	Maximum Low Level Dynamic Input Voltage		1.5	V

MC74VHC595

TIMING REQUIREMENTS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	$\begin{gathered} \mathrm{v}_{\mathrm{cc}} \\ \mathrm{~V} \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ 85^{\circ} \mathrm{C} \\ \hline \text { Limit } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$	Unit
			Typ	Limit			
$\mathrm{t}_{\text {su }}$	Setup Time, SI to SCK	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \end{aligned}$	ns
$\mathrm{t}_{\text {su(}}$ ($)$	Setup Time, SCK to RCK	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\text {su(L) }}$	Setup Time, SCLR to RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.0 \end{aligned}$	ns
$t_{\text {h }}$	Hold Time, SI to SCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.0 \end{aligned}$	ns
$\mathrm{th}_{\text {(L) }}$	Hold Time, SCLR to RCK	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time, SCLR to SCK	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Pulse Width, SCK or RCK	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}(\mathrm{L})}$	Pulse Width, SCLR	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	ns

MC74VHC595

SWITCHING WAVEFORMS

Figure 2.

Figure 4.

Figure 6.

Figure 3.

Figure 5.

Figure 7.

TEST CIRCUITS

*Includes all probe and jig capacitance
Figure 8.

*Includes all probe and jig capacitance
Figure 9.

TIMING DIAGRAM

INPUT EQUIVALENT CIRCUIT

MC74VHC595

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

SOLDERING FOOTPRINT*

 details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74VHC595

PACKAGE DIMENSIONS

SOIC-16
CASE 751B-05
ISSUE K

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PIMENSIONS
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Abstract

ON Semiconductor and the (01N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Counter Shift Registers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74HC165N 74HC195N CD4031BE CD4034BE NLV74HC165ADTR2G 5962-9172201M2A MC74HC597ADG MC100EP142MNG
MC100EP016AMNG 5962-9172201MFA TC74HC165AP(F) NTE4517B MC74LV594ADR2G 74HCT4094D-Q100J 74HCT595D, 118
TPIC6C595PWG4 74VHC164MTCX MIC5891BN CD74HC195M96 NLV74HC165ADR2G NPIC6C596ADJ NPIC6C596D-Q100,11
74HC164T14-13 STPIC6D595MTR 74HC164D.653 74HC164D.652 74HCT164D.652 74HCT164D.653 74HC4094D.653
74VHC4020FT(BJ) 74HC194D,653 74HCT164DB. 118 74HCT4094D. 112 74LV164DB. 112 74LVC594AD. 112 HEF4094BT. 653
74VHC164FT(BE) 74HCT594DB. 112 74HCT597DB.112 74LV164D. 112 74LV165D. 112 74LV4094D.112 74LV4094PW. 112
CD74HC165M 74AHC594T16-13 74AHCT595T16-13 74HC164S14-13 74HC595S16-13 74AHCT595S16-13 74AHC595S16-13

[^0]:

 Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

