MC74VHCT139A

Dual 2-to-4 Decoder/
 Demultiplexer

The MC74VHCT139A is an advanced high speed CMOS 2-to-4 decoder/demultiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL devices while maintaining CMOS low power dissipation.

When the device is enabled ($\overline{\mathrm{E}}=$ low), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs.

The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output.

The device output is compatible with TTL-type input thresholds and the output has a full 5.0 V CMOS level output swing. The input protection circuitry on this device allows overvoltage tolerance on the input, allowing the device to be used as a logic-level translator from 3.0 V CMOS logic to 5.0 V CMOS logic, or from 1.8 V CMOS logic to 3.0 V CMOS logic while operating at the high-voltage power supply

The MC74VHCT139A input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHCT139A to be used to interface 5.0 V circuits to 3.0 V circuits. The output structures also provide protection when $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$. These input and output structures help prevent device destruction caused by supply voltage-input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- High Speed: $\mathrm{t}_{\mathrm{PD}}=5.0 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- TTL-Compatible Inputs: $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$
- Power Down Protection Provided on Inputs and Outputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: Volp $=0.8 \mathrm{~V}$ (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- ESD Performance:

Human Body Model > 2000 V;
Machine Model > 200 V

- Chip Complexity: 100 FETs or 25 Equivalent Gates
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
MARKING
DIAGRAMS

FUNCTION TABLE

Inputs			Outputs			
E	A1	A0	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MC74VHCT139A

Figure 1. Pin Assignment

Figure 2. Logic Diagram

Figure 3. Expanded Logic Diagram
(1/2 of Device)

Figure 4. Input Equivalent Circuit

Figure 5. IEC Logic Diagram

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Digital Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage $\begin{aligned} & \text { Output in 3-State } \\ & \text { High or Low State }\end{aligned}$	$\begin{gathered} -0.5 \text { to }+7.0 \\ -0.5 \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \end{gathered}$	V
I_{IK}	Input Diode Current	-20	mA
lok	Output Diode Current	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air $\begin{array}{r}\text { SOIC } \\ \text { TSSOP }\end{array}$	$\begin{aligned} & 200 \\ & 180 \end{aligned}$	mW
$\mathrm{T}_{\text {STG }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
$V_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 1) Machine Model (Note 2) Charged Device Model (Note 3)	$\begin{aligned} & \hline>2000 \\ & >200 \\ & >2000 \end{aligned}$	V
L_ATCHUP	Latchup Performance \quad Above $\mathrm{V}_{\text {CC }}$ and Below GND at $125^{\circ} \mathrm{C}$ (Note 4)	± 300	mA
θ_{JA}	Thermal Resistance, Junction-to-Ambient $\begin{aligned} & \text { SOIC } \\ & \text { TSSOP }\end{aligned}$	$\begin{aligned} & 143 \\ & 164 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Tested to EIA/JESD22-A114-A
2. Tested to EIA/JESD22-A115-A
3. Tested to JESD22-C101-A
4. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage	0	5.5	V
$\mathrm{~V}_{\mathrm{OUT}}$	DC Output Voltage Output in 3-State			
	High or Low State			

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DEVICE JUNCTION TEMPERATURE VERSUS TIME

TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 6. Failure Rate vs. Time Junction Temperature

DC CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Condition	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		4.5 to 5.5	2			2		2		V
V_{IL}	Maximum Low-Level Input Voltage		4.5 to 5.5			0.8		0.8		0.8	V
V_{OH}	Maximum High-Level Output Voltage	$\begin{aligned} & V_{\text {IN }}=V_{\text {IH }} \text { or } V_{\text {IL }} \\ & I_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	4.5	4.4	4.5		4.4		4.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	4.5	3.94			3.8		3.66		
VOL	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mathrm{~A} \end{aligned}$	4.5		0	0.1		0.1		0.1	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA} \end{aligned}$	4.5			0.36		0.44		0.52	
1 N	Input Leakage Current	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND	0 to 5.5			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5			4.0		40.0		40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Additional Quiescent Supply Current (per Pin)	Any one input: $V_{I N}=3.4 \mathrm{~V}$ All other inputs: $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } G N D$	5.5			1.35		1.5		1.5	$\mu \mathrm{A}$
IOPD	Output Leakage Current	$\mathrm{V}_{\text {OUT }}=5.5 \mathrm{~V}$	0			0.5		5		5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS (Input $t_{r}=t_{f}=3.0 n s$)

Symbol	Parameter	Test Conditions	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55 \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		Unit
			Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Maximum Propagation Delay, A to Y	$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & 7.2 \\ & 9.7 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 16.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 13.0 \\ & 16.5 \end{aligned}$	ns
		$\begin{array}{ll}\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\end{array}$		$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 7.2 \\ & 9.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} \hline 8.5 \\ 10.5 \end{gathered}$	
$\begin{aligned} & \text { tpLH, } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, E to Y	$\begin{array}{\|ll} \mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & \hline 6.4 \\ & 8.9 \end{aligned}$	$\begin{gathered} \hline 9.2 \\ 12.7 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 14.5 \end{aligned}$	ns
		$\begin{array}{\|ll} \hline \mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{array}$		$\begin{aligned} & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			4	10		10		10	pF

		Typical @ 25	
$\mathrm{C}_{\text {PD }}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0 V}$			
	Power Dissipation Capacitance (Note 5)	26	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\mathrm{OPR})}=\mathrm{C}_{P D} \bullet \mathrm{~V}_{\mathrm{CC}} \bullet \mathrm{f}_{\text {in }}+\mathrm{I}_{\mathrm{CC}} / 2$ (per decoder). C_{PD} is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

MC74VHCT139A

Figure 7. Switching Waveform

*Includes all probe and jig capacitance

Figure 9. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping †
MC74VHCT139ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74VHCT139ADR2G	SOIC-16 (Pb-Free)	2500 Tape \& Reel
MC74VHCT139ADTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC74VHCT139ADTRG	TSSOP-16 (Pb-Free)	2500 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SOIC-16
CASE 751B-05
ISSUE K
SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42566B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-16 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSSOP-16
CASE 948F-01
ISSUE B
DATE 19 OCT 2006

SCALE 2:1

| DOCUMENT NUMBER: | 98ASH70247A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSSOP-16 | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Encoders, Decoders, Multiplexers \& Demultiplexers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
MC74HC163ADTG 74HC253N NLV74VHC1G01DFT1G TC74AC138P(F) NLV14051BDR2G NLV74HC238ADTR2G COMX-CAR-210
5962-8607001EA NTE74LS247 5962-8756601EA SN74LS148N 8CA3052APGGI8 TC74VHC138F(EL,K,F PI3B3251LE PI3B3251QE
NTE4028B NTE4514B NTE4515B NTE4543B NTE4547B NTE74LS249 NLV74HC4851AMNTWG MC74LVX257DG
M74HCT4851ADWR2G AP4373AW5-7-01 NL7SZ19DBVT1G MC74LVX257DTR2G 74VHC4066AFT(BJ) 74VHCT138AFT(BJ)
74HC158D.652 74HC4052D(BJ) 74VHC138MTC COMX-CAR-P1 JM38510/65852BEA 74VHC138MTCX 74HC138D(BJ) NL7SZ19DFT2G 74AHCT138T16-13 74LCX138FT(AJ) 74LCX157FT(AJ) NL7SZ18MUR2G PCA9540BD,118 QS3VH16233PAG8

SNJ54HC251J SN54LS139AJ SN74CBTLV3257PWG4 SN74ALS156DR SN74AHCT139PWR 74HC251D.652 74HC257D. 652

