MC79M00 Series

500 mA Negative Voltage Regulators

The MC79M00 series of fixed output negative voltage regulators are intended as complements to the popular MC78M00 series devices.

Available in fixed output voltage options of $-5.0 \mathrm{~V},-8.0 \mathrm{~V},-12 \mathrm{~V}$ and -15 V , these regulators employ current limiting, thermal shutdown, and safe-area compensation, making them remarkably rugged under most operating conditions. With adequate heatsinking they can deliver output currents in excess of 0.5 A .

Features

- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Also Available in Surface Mount DPAK (DT) Package
- Pb-Free Packages are Available

DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

Device	Nominal Output Voltage
MC79M05	-5.0 V
MC79M08	-8.0 V
MC79M12	-12 V
MC79M15	-15 V

Figure 1. Representative Schematic Diagram

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
THREE-TERMINAL NEGATIVE FIXED VOLTAGE REGULATORS

STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 1.1 V more negative even during the high point of the input ripple voltage. XX These two digits of the type number indicate nominal voltage.

* $\mathrm{C}_{\text {in }}$ is required if regulator is located an appreciable distance from power supply filter. ** C_{O} improve stability and transient response.

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage	V_{1}	-35	Vdc
Power Dissipation Case 221A (TO-220-3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case Case 369C (DPAK-3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	$\begin{aligned} & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \\ & \mathrm{P}_{\mathrm{D}} \\ & \theta_{\mathrm{JA}} \\ & \theta_{\mathrm{JC}} \end{aligned}$	Internally Limited 65 5.0 Internally Limited 92 6.0	W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$ W ${ }^{\circ} \mathrm{C} / \mathrm{W}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
*This device series contains ESD protection and exceeds the following tests:
Human Body Model 2000 V per MIL_STD_883, Method 3015
Machine Model Method 200 V

MC79M05B, C
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 2), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	V_{O}	-4.8	-5.0	-5.2	Vdc
Line Regulation, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 1) $\begin{aligned} & -7.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc} \\ & -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-18 \mathrm{Vdc} \end{aligned}$	Reg ${ }_{\text {line }}$	-	$\begin{aligned} & 7.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	mV
Load Regulation, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 1) $5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA}$	Reg ${ }_{\text {load }}$	-	30	100	mV
Output Voltage $-7.0 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}$	V_{O}	-4.75	-	-5.25	Vdc
Input Bias Current ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$)	I_{IB}	-	4.3	8.0	mA
Input Bias Current Change $\begin{aligned} & -8.0 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{I}=-10 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{I}_{\mathrm{IB}}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	mA
Output Noise Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$	V_{n}	-	40	-	$\mu \mathrm{V}$
Ripple Rejection ($\mathrm{f}=120 \mathrm{~Hz}$)	RR	54	66	-	dB
Dropout Voltage $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	-	0.2	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

1. Load and line regulation are specified at constant temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
2. $\mathrm{B}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C} \mathrm{C}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$.

MC79M08B, C
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{I}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 4), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	V_{O}	-7.7	-8.0	-8.3	Vdc
Line Regulation, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 3) $-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}$ $-11 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-21 \mathrm{Vdc}$	Regline	-	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	mV
$\begin{gathered} \hline \text { Load Regulation, } \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \text { (Note 3) } \\ 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \end{gathered}$	Regioad	-	30	100	mV
$\begin{aligned} & \text { Output Voltage } \\ & \qquad-10.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-25 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$	V_{O}	-7.6	-8.0	-8.4	Vdc
Input Bias Current ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	IB	-	-	8.0	mA
Input Bias Current Change $-10.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}$ $5.0 \mathrm{~mA} \leq \mathrm{l}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=-10 \mathrm{~V}$	$\Delta \mathrm{I}_{\mathrm{IB}}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	mA
Output Noise Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$	V_{n}	-	60	-	$\mu \mathrm{V}$
Ripple Rejection ($\mathrm{f}=120 \mathrm{~Hz}$)	RR	54	63	-	dB
Dropout Voltage $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	-	0.4	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

3. Load and line regulation are specified at constant temperature. Change in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
4. $B=T_{\text {low }}$ to $T_{\text {high }},-40^{\circ} \mathrm{C}<T_{J}<125^{\circ} \mathrm{C}$
$\mathrm{C}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}, 0^{\circ} \mathrm{C}<\mathrm{T}_{J}<125^{\circ} \mathrm{C}$

MC79M12B, C
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{I}}=-19 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ (Note 6), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ($\mathrm{T}_{J}=25^{\circ} \mathrm{C}$)	V_{O}	-11.5	-12	-12.5	Vdc
Line Regulation, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 5) $-14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}$ $-15 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-25 \mathrm{Vdc}$	Regline	-	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	mV
$\begin{gathered} \hline \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C}(\text { (Note } 5) \\ 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \end{gathered}$	Regload	-	30	240	mV
```Output Voltage -14.5 Vdc \geq V \ \geq-30 Vdc, 5.0 mA \leq IO \leq 350 mA```	$\mathrm{V}_{\mathrm{O}}$	-11.4	-	-12.6	Vdc
Input Bias Current ( $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ )	$\mathrm{I}_{\mathrm{B}}$	-	4.4	8.0	mA
$\begin{aligned} & \text { Input Bias Current Change } \\ & -14.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=-19 \mathrm{~V} \end{aligned}$	$\Delta l_{\text {IB }}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	mA
Output Noise Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{n}}$	-	75	-	$\mu \mathrm{V}$
Ripple Rejection ( $\mathrm{f}=120 \mathrm{~Hz}$ )	RR	54	60	-	dB
Dropout Voltage $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	-	-0.8	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

5. Load and line regulation are specified at constant temperature. Change in $\mathrm{V}_{\mathrm{O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
6. $\mathrm{B}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$
$\mathrm{C}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$

MC79M15B, C
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{I}}=-23 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA}, \mathrm{~T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$ (Note 8), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Output Voltage ( $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ )	$\mathrm{V}_{0}$	-14.4	-15	-15.6	Vdc
Line Regulation, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ (Note 7) $-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}$ $-18 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-28 \mathrm{Vdc}$	Regline	-	$\begin{aligned} & 5.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 50 \end{aligned}$	mV
$\begin{gathered} \text { Load Regulation, } \mathrm{T}_{J}=25^{\circ} \mathrm{C} \text { (Note 7) } \\ 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 500 \mathrm{~mA} \end{gathered}$	Regload	-	30	240	mV
$\begin{aligned} & \text { Output Voltage } \\ & \qquad-17.5 \mathrm{Vdc} \geq \mathrm{V}_{1} \geq-30 \mathrm{Vdc}, 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{O}}$	-14.25	-	-15.75	Vdc
Input Bias Current ( $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ )	$I_{\text {IB }}$	-	4.4	8.0	mA
$\begin{aligned} & \text { Input Bias Current Change } \\ & -17.5 \mathrm{Vdc} \geq \mathrm{V}_{\mathrm{I}} \geq-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{O}}=350 \mathrm{~mA} \\ & 5.0 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 350 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=-23 \mathrm{~V} \end{aligned}$	$\Delta \mathrm{I}_{\mathrm{IB}}$	-	-	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	mA
Output Noise Voltage, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 10 \mathrm{~Hz} \leq \mathrm{f} \leq 100 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{n}}$	-	90	-	$\mu \mathrm{V}$
Ripple Rejection ( $\mathrm{f}=120 \mathrm{~Hz}$ )	RR	54	60	-	dB
Dropout Voltage $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{1}-\mathrm{V}_{\mathrm{O}}$	-	1.1	-	Vdc
Average Temperature Coefficient of Output Voltage $\mathrm{I}_{\mathrm{O}}=5.0 \mathrm{~mA}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq 125^{\circ} \mathrm{C}$	$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	-	-1.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

7. Load and line regulation are specified at constant temperature. Change in $\mathrm{V}_{\mathrm{O}}$ due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.
8. $B=T_{\text {low }}$ to $T_{\text {high }},-40^{\circ} \mathrm{C}<T_{J}<125^{\circ} \mathrm{C}$
$\mathrm{C}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}, 0^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{J}}<125^{\circ} \mathrm{C}$


Figure 1. DPAK-3 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

## MC79M00 Series

## Protection Diodes

When external capacitors are used with MC79M00 series regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator or from output polarity reversals. Generally, no protection diode is required for values of output capacitance less then $10 \mu \mathrm{~F}$. Figure 2 shows the MC79M15 with the recommended protection diodes.

- Opposite Polarity Protection

Diode D1 protects the regulator from output polarity reversals during startup, power off and short-circuit operation.

- Reverse-bias Protection

Diode D2 prevents output capacitor from discharging thru the MC79M15 during an input short circuit or fast switch off of power supply.


Figure 2. Protection Diodes

## MC79M00 Series

ORDERING INFORMATION

Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping ${ }^{\dagger}$
MC79M05BDT	4.0\%	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M05BDTG			$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
MC79M05BDTRK			DPAK	2500 Units / Reel
MC79M05BDTRKG			DPAK (Pb-Free)	2500 Units / Reel
MC79M05BT			TO-220	50 Units / Rail
MC79M05BTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC79M05CDT		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M05CDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M05CDTRK			DPAK	2500 Units / Reel
MC79M05CDTRKG			DPAK (Pb-Free)	2500 Units / Reel
MC79M05CT			TO-220	50 Units / Rail
MC79M05CTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \\ \hline \end{gathered}$	50 Units / Rail
MC79M08BDT		$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M08BDTRK			DPAK	2500 Units / Reel
MC79M08BDTRKG			$\begin{gathered} \hline \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Reel
MC79M08BT			TO-220	50 Units / Rail
MC79M08BTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC79M08CDT		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M08CDTG			$\begin{gathered} \hline \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
MC79M08CDTRK			DPAK	2500 Units / Reel
MC79M08CDTRKG			DPAK (Pb-Free)	2500 Units / Reel
MC79M08CT			TO-220	50 Units / Rail
MC79M08CTG			$\begin{gathered} \hline \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC79M12BDT		$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M12BDTG			$\begin{gathered} \hline \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
MC79M12BDTRK			DPAK	2500 Units / Reel
MC79M12BDTRKG			$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \\ \hline \end{gathered}$	2500 Units / Reel
MC79M12BT			TO-220	50 Units / Rail
MC79M12BTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC79M12CDT		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M12CDTG			$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	75 Units / Rail
MC79M12CDTRK			DPAK	2500 Units / Reel
MC79M12CDTRKG			$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Reel
MC79M12CT			TO-220	50 Units / Rail
MC79M12CTG			$\begin{gathered} \hline \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## MC79M00 Series

ORDERING INFORMATION

Device	Output Voltage Tolerance	Operating Temperature Range	Package	Shipping ${ }^{+}$
MC79M15BDT	4.0\%	$\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M15BDTG			DPAK (Pb-Free)	75 Units / Rail
MC79M15BDTRK			DPAK	2500 Units / Reel
MC79M15BDTRKG			$\begin{gathered} \text { DPAK } \\ \text { (Pb-Free) } \end{gathered}$	2500 Units / Reel
MC79M15BT			TO-220	50 Units / Rail
MC79M15BTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail
MC79M15CDT		$\mathrm{T}_{J}=0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DPAK	75 Units / Rail
MC79M15CDTG			DPAK   (Pb-Free)	75 Units / Rail
MC79M15CDTRK			DPAK	2500 Units / Reel
MC79M15CDTRKG			DPAK (Pb-Free)	2500 Units / Reel
MC79M15CT			TO-220	50 Units / Rail
MC79M15CTG			$\begin{gathered} \text { TO-220 } \\ \text { (Pb-Free) } \end{gathered}$	50 Units / Rail

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


SCALE 1:1


TO-220, SINGLE GAUGE
CASE 221AB-01
ISSUE A
DATE 16 NOV 2010

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCHES.

DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.
4. PRODUCT SHIPPED PRIOR TO 2008 HAD DIMENSIONS $\mathrm{S}=0.045-0.055$ INCHES ( $1.143-1.397 \mathrm{MM}$ )

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.020	0.024	0.508	0.61
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 1:

PIN 1.
2 .
COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5:
PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

STYLE 9:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 2:
PIN 1. BAS
EMITTER COLLECTOR
4. EMITTER

STYLE 6:
PIN 1 .
ANODE CATHODE
3. ANODE

STYLE 10
PIN 1. GAT
. SOURCE
3. DRAIN
4. SOURCE
3. CATHODE

STYLE 3

## PIN 1. CATHODE

ANODE
GATE
4. ANODE

STYLE 7:
PIN 1.
3. CATHODE
4. ANODE

STYLE 11:
PIN 1. DRAIN
2. SOURCE
3. GATE
4. SOURCE

## STYLE 4:

PIN 1. MAIN TERMINAL 1
MAIN TERMINAL 2
GATE
MAIN TERMINAL 2

STYLE 8:
PIN 1. CATHODE
ANODE
EXTERNAL TRIP/DELAY
ANODE

| DOCUMENT NUMBER: | 98AON23085D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-220, SINGLE GAUGE | PAGE 1 OF 1 |

[^0]

DPAK (SINGLE GAUGE)
CASE 369C
ISSUE F

SCALE 1:1


## SOLDERING FOOTPRINT*



XXXXXX	$=$ Device Code
A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
WW	$=$ Work Week
G	$=$ Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON10527D | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | DPAK (SINGLE GAUGE) | PAGE 1 OF 1 |

[^1]onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Linear Voltage Regulators category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
LV56831P-E LV5684PVD-XH MCDTSA6-2R L7815ACV-DG LV56801P-E TCR3DF13,LM(CT TCR3DF39,LM(CT TLE42794G L78L05CZ/1SX L78LR05DL-MA-E LM317T 636416C 714954EB LV5680P-E L78M15CV-DG L79M05T-E TLS202A1MBVHTSA1 L78LR05D-MA-E NCV317MBTG NTE7227 NCV78M09BDTRKG LV5680NPVC-XH LT1054CN8 ME6208A50M3G SL7533-8 ME6231A50M3G ME6231A50PG ME6231C50M5G AMS1117S-3.3 AMS1117-5.0 AMS1117S-5.0 AMS1117-3.3 MD5118 MD5121 MD5127 MD5128 MD5130 MD5144 MD5150 MD5115 MD5125 MD5133 MD5136 MD5140 MD5110 MD52E18WB6 MD52E33WB6 MD52E15QA3 MD52E21QA3 MD52E25QA3


[^0]:    ON Semiconductor and (JN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

[^1]:    ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

