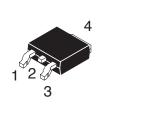


Surface Mount – 400V - 600V > MCR716, MCR718

MCR716, MCR718

Features

Description


- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics

Designed for high volume, low cost, industrial and consumer applications such as motor control; process

control; temperature, light and speed control.

- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- Pb-Free Packages are Available

Pin Out

Functional Diagram

Additional Information

© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 08/30/17

Maximum Ratings $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (T _J = - 40 to 125°C, Sine Wave, 50 to 60 Hz, Gate Open) MCR716 MCR718	V _{DRM} , V _{RRM}	400 600	V
On-State RMS Current (All Conduction Angles; T _c = 90°C)	I _{T (RMS)}	4.0	А
Average On–State Current (180° Conduction Angles; T _c = 90°C)	I _{T(AV)}	2.6	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, $T_J = 110^{\circ}$ C)	I _{TSM}	25	А
Circuit Fusing Consideration (t = 8.3 ms)	l²t	2.6	A²sec
Forward Peak Gate Power (Pulse Width \leq 10. $\mu sec, T_c = 90$ °C)	P _{GM}	0.5	W
Forward Average Gate Power (t = 8.3 msec, T _C = 90°C)	P _{GM (AV)}	0.1	W
Forward Peak Gate Current (Pulse Width $\leq 1.0 \mu sec$, $T_{c} = 90^{\circ}C$)	I _{GM}	0.2	А
Operating Junction Temperature Range	Т	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	R _{sJC}	3.0	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	R _{sJA}	80	
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	T _L	260	°C

^{1.} V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thyristors

Electrical Characteristics - **OFF** (T₁ = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current	T _J = 25°C	l _{DRM} ,	-	-	10	uА
(Note 3) ($V_{AK} = Rated V_{DRM} \text{ or } V_{RRM}, R_{GK} = 1.0 \text{ k}\Omega$	T _J = 110°C	I _{RRM}	-	-	200	μΑ

Electrical Characteristics - **ON** $(T_J = 25^{\circ}C \text{ unless otherwise noted})$

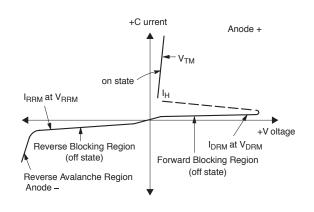
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Reverse Gate Blocking Voltage (I _{GR} = 10 μA)		V _{GRM}	10	12.5	18	V
Peak Reverse Gate Blocking Current (V _{GR} = 10 V)		I _{RGM}	-	-	1.2	μА
	(I _{TM} = 5.0 A Peak)	\/	-	1.3	1.5	V
Peak Forward On-State Voltage (Note 4)	(I _{TM} = 8.2 A Peak)	V _{TM}	-	1.5	2.2	
Gate Trigger Current (Continuous dc) (Note 5)	(T _J = 25°C)		1.0	25	75	μΑ
$(V_{AK} = 12 \text{ Vdc}, R_L = 30 \Omega)$	$(T_J = -40^{\circ}C)$	GT	-	_	300	
	(T _J = 25°C)		0.3	0.55	0.8	
Gate Trigger Voltage (Continuous dc) $(V_D = 12 V_{DC'} R_L = 30 \Omega)$ (Note 5)	$(T_J = -40^{\circ}C)$	V _{GT}	-	-	1.0	V
	(T _J = 110°C)	-	0.2	_	-	
Holding Current	(T _J = 25°C)	I _H	0.4	1.0	5.0	A
$(V_D = 12 \text{ V, Initiating Current} = 200 \text{ mA, R}_{GK} = 1 \text{ k}\Omega)$	$(T_J = -40^{\circ}C)$		-	-	10	mA
Latching Current $(V_D = 12 V_{DC'} I_G)$	= 2.0 mA,T _c = 25°C)	IL	-	_	5.0	
$(V_D = 12 V_{DC}, I_G)$	= 2.0 mA, T_c = -40°C)		-	_	10	mA
Total Turn–On Time (Source Voltage = 12 V, $R_S = 6.0 \text{ k}\Omega$, $I_T = 8 \text{ A(pk)}$, $R_{GK} = 1.0 \text{ k}\Omega$) (VD = Rated V_{DRM} , Rise Time = 20 ns, Pulse Width = 10 μ s)		tgt	-	2.0	5.0	μs

Dynamic Characteristics

Characteristic		Min	Тур	Max	Unit
Critical Rate of Rise of Off–State Voltage ($V_D = 0.67 \text{ X Rated } V_{DRM}$, Exponential Waveform, $R_{GK} = 1.0 \text{ kQ}$, TJ = 110°C)		5.0	10	-	V/µs
Critical Rate of Rise of On–State Current (IPK = 50 A, Pw = 40 sec, diG/dt = 1 A/sec, lgt = 50 mA		-	-	100	Aµs

^{2.} Case 369C, when surface mounted on minimum recommended pad size.

^{3.} Ratings apply for negative gate voltage or RGK = 1.0 kQ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.


^{4.} Pulse Test; Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%.

^{5.} RGK current not included in measurements.

Voltage Current Characteristic of SCR

Symbol	Parameter	
V_{DRM}	Peak Repetitive Forward Off State Voltage	
I _{DRM}	Peak Forward Blocking Current	
V _{RRM}	Peak Repetitive Reverse Off State Voltage	
I _{RRM}	Peak Reverse Blocking Current	
V _{TM}	Maximum On State Voltage	
I _H	Holding Current	

Figure 1. RMS Current Derating

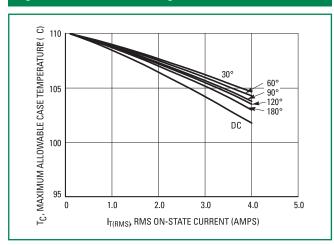


Figure 2. On-State Power Dissipation

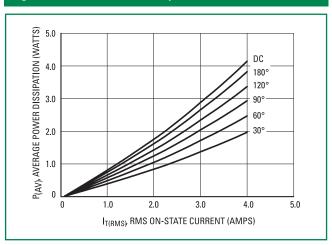


Figure 3. On-State Characteristics

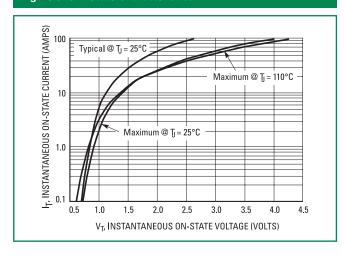
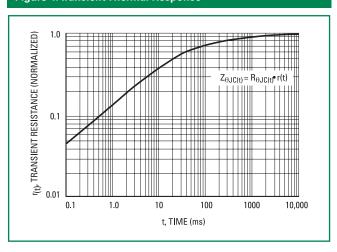



Figure 4. Transient Thermal Response

Surface Mount - 400V - 600V > MCR716, MCR718

Figure 5. Typical Gate Trigger Current vs Junction Temperature

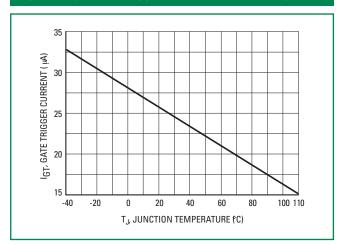


Figure 6. Typical Gate Trigger Voltage vs Junction Temperature

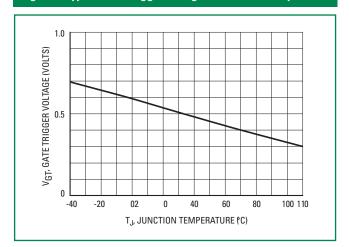


Figure 7. Typical Holding Current vs Junction Temperature

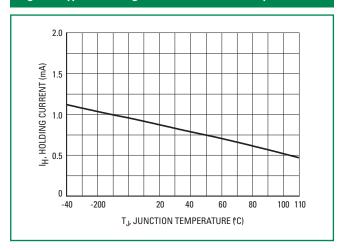
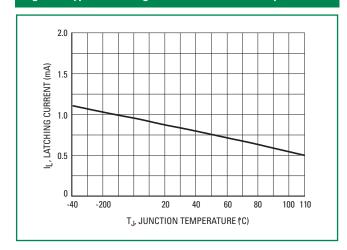
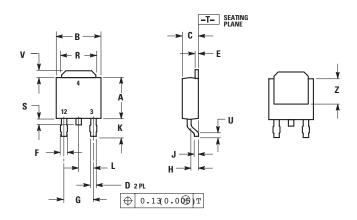




Figure 8. Typical Latching Current vs Junction Temperature


Dimensions

5 .	Dim Inches Min Max		Millimeters		
Dim			Min	Max	
А	0.235	0.245	5.97	6.22	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.180	0.180 BSC		BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.102	0.114	2.60	2.89	
L	0.090 BSC		2.29	BSC	
R	0.180	0.215	4.57	5.45	
S	0.025	0.040	0.63	1.01	
U	0.020		0.51		
V	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

Soldering Footprint

Part Marking System

Pin Assignment	
1	Cathode
2	Anode
3	Gate
4	Anode

Ordering Information

Device	Package	Shipping
MCR716T4	DPAK	
MCR716T4G	DPAK (Pb-Free)	2500 /
MCR718T4	DPAK	Tape & Reel
MCR718T4G	DPAK (Pb-Free)	

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlefuse.com/disclaimer-electronics

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-16RIA120 VS-110RKI40 NTE5427 NTE5442 TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518 NTE5519 NTE5529 NTE5553 NTE5557 NTE5557 NTE5567 NTE5570 NTE5572 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589 NTE5598