

MCR72-3, MCR72-6, MCR72-8

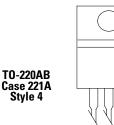
Description

Designed for industrial and consumer applications such as temperature, light and speed control; process and remote controls; warning systems; capacitive discharge circuits and MPU interface.

Features

- Center Gate Geometry for Uniform Current Density
- All Diffused and Glass-Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability

Functional Diagram


• Low Trigger Currents, 200 A Maximum for Direct Driving from Integrated Circuits

Po

• These are Pb–Free Devices

Pin Out

Additional Information

Samples

Thyristors 8Amps Sen SCR

Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (- 40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open)	MCR72-3 MCR72-6 MCR72-8	V _{drm} , V _{rrm}	100 400 600	V
On-State RMS Current (180° Conduction Angles; T _c = 83°C)		I _{T (RMS)}	8.0	А
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 110°C		I _{TSM}	100	А
Circuit Fusing Consideration (t = 8.3 ms)		l²t	40	A²s
Forward Peak Gate Voltage (Pulse Width \leq 10 $\mu sec, T_c = 83^{\circ} C)$		V _{GM}	±5.0	V
Forward Peak Gate Current (Pulse Width \leq 10 $\mu sec, T_c = 83^{\circ} C)$		I _{GM}	1.0	A
Forward Peak Gate Power (Pulse Width \leq 10 µsec, T _c = 83°C)		P _{GM}	5.0	W
Average Gate Power (t = 8.3 ms, $T_c = 83^{\circ}C$)		P _{G(AV)}	0.75	W
Operating Junction Temperature Range		TJ	-40 to +110	°C
Storage Temperature Range		T _{stq}	-40 to +150	°C
MountingTorque		_	8.0	in. lb.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. So Upper and V_{BBUE} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics					
Characterstic	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Case	R _{ejc}	2.2	°C/W		
Thermal Resistance, Junction-to-Ambient	R _{eja}	60	0,00		
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C		

Electrical Characteristics \cdot **OFF** (T₁ = 25°C unless otherwise noted)

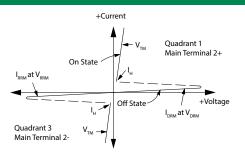
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	$T_J = 25^{\circ}C$	I _{DRM}	-	-	10	
$(V_{AK} = V_{DRM} = V_{RRM}; R_{GK} = 1K\Omega)$	T _J = 110°C	I	-	-	500	μA
High Logic Level Supply Current from $\rm V_{cc}$	^ 	I _{CCH}	4	4	-	

Electrical Characteristics - ON (T₁ = 25°C unless otherwise noted)

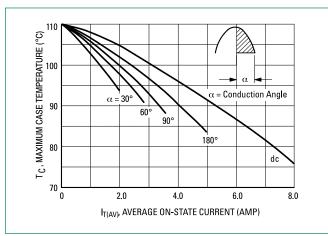
Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward On–State Voltage ($I_{TM} = 16 \text{ A Peak}$, Pulse Width $\leq 1 \text{ ms}$, Duty Cycle $\leq 2\%$)	V _{TM}	_	1.7	2.0	V
Gate Trigger Current (Continuous dc) (Note 3) ($V_D = 12 \text{ V}$; $R_L = 100 \Omega$)	I _{GT}	_	30	200	μA
Gate Trigger Voltage (Continuous dc) (Note 3) ($V_{D} = 12 \text{ V}$; $R_{L} = 100 \Omega$)	V _{GT}	_	0.5	1.5	V
Gate Trigger Non-Trigger Voltage ($V_{_D}$ = 12 Vdc, $R_{_L}$ = 100 Ω , $T_{_J}$ = 110°C)	V _{gD}	0.1	_	_	V
Holding Current ($V_p = 12 \text{ V}$, Initiating Current = 200 mA, RGK = 1k Ω)	I _H	_	-	6.0	mA
Gate Controlled Turn-On Time (Note 5) (V_{D} = Rated $V_{DRM'}$ I _{TM} = 16 A, I _G = 2 mA)	t _{gt}	_	1.0	-	μs

Thyristors 8Amps Sen SCR

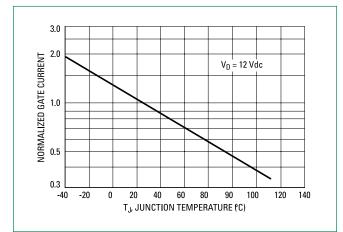
Dynamic Characteristics					
Characteristic	Symbol	Min	Тур	Мах	Unit
Critical Rate-of-Rise of Off-State Voltage (V_p = Rated $V_{DRM'}$ Exponential Waveform, Gate Open, T_j = 110°C)	dv/dt	-	10	-	V/µs

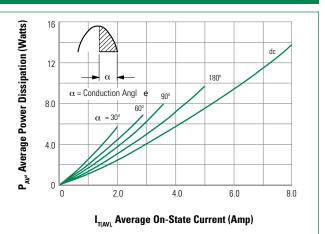

be indicated by the Electrical Characteristics if operated under Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not different conditions.

2. Ratings apply for negative gate voltage or R_{ox} = 1KΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.


3. RGK current not included in measurement.

Voltage Current Characteristic of SCR


Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current


Figure 1. Average Current Derating

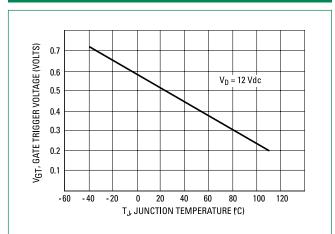
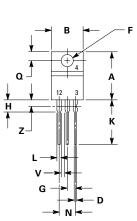
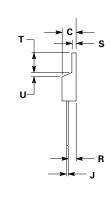

Figure 3. Normalized Gate Current

Figure 2. On-State Power Dissipation


Figure 4. Gate Voltage



Dimensions

TO-220 Case 221A-01 Issue O

TO-220

Case 221A-09

Issue AH

Part Marking System				
		4		
	CR72-XG AKA		YMAXX ICR72-6TG AKA	
MCR72-x Y A AKA G	=Device Code =Year =Month =Assembly Site =Diode Polarity =Pb-Free Package	MCR72-6T Y A AKA G	=Device Code =Year =Month =Assembly Site =Diode Polarity =Pb-Free Package	

Dim	Inc	hes	Millim	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
К	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
٥	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
v	0.045		1.15	
Z		0.080		2.04

 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

Pin Assignment			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

Ordering Information

Device	Package	Shipping
MCR72-3G		
MCR72-6G	TO-220AB (Pb-Free)	500 Units / Box
MCR72-6TG		
MCR72-8G		
MCR72-8TG		

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

<u>NTE5428 T1500N16TOF VT TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R T1190N16TOF VT</u> <u>T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-16RIA120 VS-110RKI40 NTE5427 NTE5442</u> <u>T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF</u> <u>VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518</u> <u>NTE5519 NTE5529 NTE5553 NTE5555 NTE5557 NTE5567 NTE5570 NTE5572 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589</u> <u>NTE5592</u>