

Is Now Part of

ON Semiconductor ${ }^{\oplus}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore ($_$), the underscore ($_$) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild questions@onsemi.com.

[^0]
MCT5210M, MCT5211M

6-Pin DIP Low Input Current Phototransistor Optocouplers

Features

- High CTR CE(SAT) Comparable to Darlingtons

■ High Common Mode Transient Rejection: $5 \mathrm{kV} / \mu \mathrm{s}$

- Data Rates Up to 150 kbits/s (NRZ)

■ Safety and Regulatory Approvals:

- UL1577, 4,170 VAC RMs for 1 Minute
- DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

■ CMOS to CMOS/LSTTL Logic Isolation
■ LSTTL to CMOS/LSTTL Logic Isolation
■ RS-232 Line Receiver
■ Telephone Ring Detector
■ AC Line Voltage Sensing
■ Switching Power Supply

Description

The MCT5210M and MCT5211M devices consist of a high-efficiency AIGaAs infrared emitting diode coupled with an NPN phototransistor in a six-pin dual-in-line package

The devices are well suited for CMOS to LSTT/TTL interfaces, offering 250% CTR ${ }_{\text {CE(SAT) }}$ with 1 mA of LED input current. With an LED input current of 1.6 mA , data rates to 20 K bits/s are possible.

Both can easily interface LSTTL to LSTTL/TTL, and with use of an external base-to-emitter resistor data rates of 100 K bits/s can be achieved.

Schematic

Figure 1. Schematic

Package Outlines

Figure 2. Package Outlines

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	$<150 \mathrm{~V}_{\text {RMS }}$	I-IV
$0110 / 1.89$ Table 1, For Rated Mains Voltage	$<300 \mathrm{~V}_{\text {RMS }}$	I-IV
Climatic Classification	$55 / 100 / 21$	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {PR }}$	Input-to-Output Test Voltage, Method $\mathrm{A}, \mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test with $\mathrm{t}_{\mathrm{m}}=10 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1360	$\mathrm{~V}_{\text {peak }}$
	Input-to-Output Test Voltage, Method B, $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}$, 100% Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{~s}$, Partial Discharge $<5 \mathrm{pC}$	1594	$\mathrm{~V}_{\text {peak }}$
	Maximum Working Insulation Voltage	850	$\mathrm{~V}_{\text {peak }}$
$\mathrm{V}_{\text {IOTM }}$	Highest Allowable Over-Voltage	6000	$\mathrm{~V}_{\text {peak }}$
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
	External Clearance (for Option TV, 0.4" Lead Spacing)	≥ 10	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.5	mm
$\mathrm{~T}_{\mathrm{S}}$	Case Temperature ${ }^{(1)}$	175	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{S}, \text { INPUT }}$	Input Current ${ }^{(1)}$	350	mA
$\mathrm{P}_{\mathrm{S}, \mathrm{OUTPUT}}$	Output Power ${ }^{(1)}$	800	mW
$\mathrm{R}_{\text {IO }}$	Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{\text {IO }}=500 \mathrm{~V}^{(1)}$	$>10^{9}$	Ω

Note:

1. Safety limit values - maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Unit
TOTAL DEVICE			
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
ToPR	Operating Temperature	-40 to +100	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SOL }}$	Lead Solder Temperature	260 for 10 seconds	${ }^{\circ} \mathrm{C}$
$P_{\text {D }}$	Total Device Power Dissipation @ $25^{\circ} \mathrm{C}$ (LED plus detector)	225	mW
	Derate Linearly From $25^{\circ} \mathrm{C}$	3.5	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
EMITTER			
I_{F}	Continuous Forward Current	50	mA
V_{R}	Reverse Input Voltage	6	V
$\mathrm{I}_{\mathrm{F}}(\mathrm{pk})$	Forward Current - Peak (1 $\mu \mathrm{s}$ pulse, 300 pps)	3.0	A
$P_{\text {D }}$	LED Power Dissipation @ $25^{\circ} \mathrm{C}$	75	mW
	Derate Linearly From $25^{\circ} \mathrm{C}$	1.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
DETECTOR			
I_{C}	Continuous Collector Current	150	mA
P_{D}	Detector Power Dissipation @ $25^{\circ} \mathrm{C}$	150	mW
	Derate Linearly From $25^{\circ} \mathrm{C}$	2.0	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Individual Component Characteristics

Symbol	Parameters	Test Conditions	Min.	Typ.	Max.	Unit	
EMITTER							
V_{F}	Input Forward Voltage	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$		1.25	1.50	V	
$\frac{\Delta \mathrm{~V}_{\mathrm{F}}}{\Delta \mathrm{T}_{\mathrm{A}}}$	Forward Voltage Temperature Coefficient	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	-1.75		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$		
V_{R}	Reverse Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$	6			V	
C_{J}	Junction Capacitance	$\mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$		18	pF		

DETECTOR

$\mathrm{BV}_{\text {CEO }}$	Breakdown Voltage, Collector-to-Emitter	$\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{F}}=0$	30	100	
$\mathrm{BV}_{\mathrm{CBO}}$	Breakdown Voltage, Collector-to-Base	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	30	120	V
$\mathrm{BV}_{\mathrm{EBO}}$	Breakdown Voltage, Emitter-to-Base	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{F}}=0$	5	V	
$\mathrm{I}_{\mathrm{CER}}$	Dark Current, Collector-to-Emitter	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0, \mathrm{R}_{\mathrm{BE}}=1 \mathrm{M} \Omega$		1	100
C_{CE}	Capacitance, Collector-to-Emitter	$\mathrm{V}_{\mathrm{CE}}=0, \mathrm{f}=1 \mathrm{MHz}$	nA		
C_{CB}	Capacitance, Collector-to-Base	$\mathrm{V}_{\mathrm{CB}}=0, \mathrm{f}=1 \mathrm{MHz}$		10	V
C_{EB}	Capacitance, Emitter-to-Base	$\mathrm{V}_{\mathrm{EB}}=0, \mathrm{f}=1 \mathrm{MHz}$		80	pF

Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Transfer Characteristics

Symbol	Characteristics	Test Conditions	Device	Min.	Typ.	Max.	Unit
DC CHARACTERISTICS							
CTR $\mathrm{CE}_{\text {(SAT) }}$	Saturated Current Transfer Ratio Collector-to-Emitter ${ }^{(2)}$	$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=0.4 \mathrm{~V}$	MCT5210M	60			\%
		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=0.4 \mathrm{~V}$	MCT5211M	100			\%
		$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=0.4 \mathrm{~V}$		75			\%
CTR (CE)	Current Transfer Ratio Collector-to-Emitter ${ }^{(2)}$	$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	MCT5210M	70			\%
		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$	MCT5211M	150			\%
		$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5.0 \mathrm{~V}$		110			\%
CTR ${ }_{(C B)}$	Current Transfer Ratio Collector-to-Base ${ }^{(3)}$	$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=4.3 \mathrm{~V}$	MCT5210M	0.2			\%
		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=4.3 \mathrm{~V}$	MCT5211M	0.3			\%
		$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=4.3 \mathrm{~V}$		0.25			\%
$\mathrm{V}_{\text {CE(SAT) }}$	Saturation Voltage	$\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{CE}}=1.8 \mathrm{~mA}$	MCT5210M			0.4	V
		$\mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \mathrm{I}_{\mathrm{CE}}=1.6 \mathrm{~mA}$	MCT5211M			0.4	V

AC CHARACTERISTICS

$\mathrm{T}_{\text {PHL }}$	Propagation Delay HIGH-to-LOW ${ }^{(4)}$	$\mathrm{R}_{\mathrm{L}}=330 \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	MCT5210M	10	
		$\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=39 \mathrm{k} \Omega$			7	s
		$\mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	MCT5211M	14	s
		$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=91 \mathrm{k} \Omega$			15	s
		$\mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$		17	s
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=160 \mathrm{k} \Omega$			24	s
$\mathrm{T}_{\text {PLH }}$	Propagation Delay LOW-to-HIGH ${ }^{(5)}$	$\mathrm{R}_{\mathrm{L}}=330 \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	MCT5210M	0.4	s
		$\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=39 \mathrm{k} \Omega$			8	s
		$\mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	MCT5211M	2.5	s
		$\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=91 \mathrm{k} \Omega$			11	s
		$\mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=\infty$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$		7	s
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{BE}}=160 \mathrm{k} \Omega$			16	$\mu \mathrm{s}$

Notes:

2. DC Current Transfer Ratio $\left(\right.$ CTR $\left._{C E}\right)$ is defined as the transistor collector current ($I_{C E}$) divided by the input LED current $\left(\mathrm{I}_{\mathrm{F}}\right) \times 100 \%$, at a specified voltage between the collector and emitter $\left(\mathrm{V}_{\mathrm{CE}}\right)$.
3. The collector base Current Transfer Ratio (CTR ${ }_{C B}$) is defined as the transistor collector base photocurrent $\left(I_{C B}\right)$ divided by the input LED current $\left(I_{F}\right)$ time 100%.
4. Referring to Figure 16 the $T_{P H L}$ propagation delay is measured from the 50% point of the rising edge of the data input pulse to the 1.3 V point on the falling edge of the output pulse.
5. Referring to Figure 16 the $\mathrm{T}_{\text {PLH }}$ propagation delay is measured from the 50% point of the falling edge of data input pulse to the 1.3 V point on the rising edge of the output pulse.

Electrical Characteristics (Continued)

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.
Isolation Characteristics

Symbol	Characteristic	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {ISO }}$	Input-Output Isolation Voltage $^{(6)}$	$\mathrm{t}=1$ Minute	4170			$\mathrm{VAC}_{\mathrm{RMS}}$
$\mathrm{R}_{\mathrm{ISO}}$	Isolation Resistance ${ }^{(6)}$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}= \pm 500 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	10^{11}			Ω
$\mathrm{C}_{\mathrm{ISO}}$	Isolation Capacitance ${ }^{(7)}$	$\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		0.4	0.6	pF
CM_{H}	Common Mode Transient Rejection - Output HIGH	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{I}_{\mathrm{F}}=0$		5000		$\mathrm{~V} / \mu \mathrm{s}$
CM_{L}	Common Mode Transient Rejection - Output LOW	$\mathrm{V}_{\mathrm{CM}}=50 \mathrm{~V}_{\mathrm{P-P},}, \mathrm{R}_{\mathrm{L}}=750 \Omega, \mathrm{I}_{\mathrm{F}}=1.6 \mathrm{~mA}$		5000		$\mathrm{~V} / \mu \mathrm{s}$

Notes:

6. Device considered a two terminal device: pins 1, 2, and 3 shorted together and pins 5, 6 and 7 are shorted together.
7. $C_{\text {ISO }}$ is the capacitance between the input (pins $1,2,3$ connected) and the output (pin 4,5, 6 connected).

Typical Performance Curves

Figure 3. LED Forward Voltage vs. Forward Current

Figure 5. Normalized CTR vs. Temperature

Figure 7. Normalized Collector Base Photocurrent Ratio vs. Forward Current

Figure 4. Normalized Current Transfer Ratio vs. Forward Current

Figure 6. Normalized Collector vs. Collector-Emitter Voltage

Figure 8. Normalized Collector-Base Current vs. Temperature

Typical Performance Curves (Continued)

Figure 9. Collector-Emitter Dark Current vs. Ambient Temperature

Figure 11. Switching Time
vs. Ambient Temperature

Figure 13. Switching Time vs. Ambient Temperature

Figure 10. Switching Time
vs. Ambient Temperature

Figure 12. Switching Time vs. Ambient Temperature

Figure 14. Switching Time vs. Base-Emitter Resistance

Switching Time Test Circuits and Waveforms

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Figure 15. Switching Time Test Circuits

Figure 16. Switching Time Waveforms

Ordering Information

Part Number	Package	Packing Method
MCT5210M	DIP 6-Pin	Tube (50 Units)
MCT5210SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
MCT5210SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
MCT5210VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MCT5210SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
MCT5210SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
MCT5210TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

Note:

8. The product orderable part number system listed in this table also applies to the MCT5211M device.

Marking Information

Figure 18. Top Mark
Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	One-Digit Year Code, e.g., "5"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06BREV4.

LAND PATTERN RECOMMENDATION
5.08 (MAX)
$3.28-3.53$

notes:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION : MKT-N06CREV4.

NOTES:
A) NO STANDARD APPLIES TO THIS PACKAGE.
B) ALL DIMENSIONS ARE IN MILLIMETERS.
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,

MOLD FLASH, AND TIE BAR EXTRUSION
D) DRAWING FILENAME AND REVSION: MKT-N06Drev4

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Transistor Output Optocouplers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-VA PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F1 X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPCA21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

