

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

August 2016

MCT6, MCT61, MCT62 8-Pin Dual Channel Phototransistor Optocouplers

Features

- · Two Isolated Channels Per Package
- · Safety and Regulatory Approvals:
 - UL1577, 5,000 VAC $_{RMS}$ for 1 Minute
 - DIN-EN/IEC60747-5-5, 890 V Peak Working Insulation Voltage

Applications

- AC line/digital logic isolate high voltage transients
- Digital logic/digital logic eliminate spurious grounds
- Digital logic/AC triac control isolate high voltage
- transients
- Twisted pair line receiver eliminate ground loop
- feedthrough
- Telephone/telegraph line receiver isolate high
- voltage transients
- · High frequency power supply feedback control -
- · maintain floating grounds and transients
- Relay contact monitor isolate floating grounds and
- transients
- · Power supply monitor isolate transients

Description

The general purpose optocouplers, MCT6, MCT61, and MCT62, have two isolated channels in a standard plastic 8-pin dual-in-line (DIP) package for density applications. Each channel consists of a gallium arsenide infrared emitting diode driving a NPN silicon planar phototransistor. For four channel applications, two packages fit into a standard 16-pin DIP socket.

ANODE 1 CATHODE 3 ANODE 4 Figure 2. Package Outlines

Figure 1. Schematic

Safety and Insulation Ratings

As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter		Characteristics
Installation Classifications per DIN VDE	< 150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	< 300 V _{RMS}	I–IV
Climatic Classification		55/115/21
Pollution Degree (DIN VDE 0110/1.89)		2
Comparative Tracking Index		175

Symbol	Parameter	Value	Unit
V _{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10 \text{ s}$, Partial Discharge < 5 pC	1424	V _{peak}
V PR	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	1668	V _{peak}
V _{IORM}	Maximum Working Insulation Voltage	890	V _{peak}
V_{IOTM}	Highest Allowable Over-Voltage	8000	V _{peak}
	External Creepage	≥ 7	mm
	External Clearance	≥ 7	mm
DTI	Distance Through Insulation (Insulation Thickness)	≥ 0.4	mm
T _S	Case Temperature ⁽¹⁾	175	°C
I _{S,INPUT}	Input Current ⁽¹⁾	60	mA
P _{S,OUTPUT}	Output Power ⁽¹⁾	150	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V ⁽¹⁾	> 10 ⁹	Ω

Note:

1. Safety limit values – maximum values allowed in the event of a failure.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-55 to +150	°C
T _{OPR}	Operating Temperature	-55 to +100	°C
T _J	Junction Temperature	-55 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec- onds	°C
D	Total Device Power Dissipation @ T _A = 25°C	400	mW
P_{D}	Derate Above 25°C	5.33	mW/°C
EMITTER (Eac	h channel)		
IF	DC / Average Forward Input Current	60	mA
I _F (pk)	Forward Current - Peak (PW = 1µs, 300pps)	3	Α
V _R	Reverse Input Voltage	3	V
В	Total Power Dissipation @ T _A = 25°C	100	mW
P _{D(EMITTER)}	Derate Above 25°C	1.3	mW/°C
DETECTOR			
I _C	Continuous Collector Current	30	mA
D	Total Power Dissipation @ T _A = 25°C	150	mW
P _{D(DETECTOR)}	Derate Above 25°C	2.0	mW/°C

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
EMITTER				•		
V _F	Input Forward Voltage	I _F = 20 mA		1.2	1.5	V
V _R	Reverse Voltage	I _R = 10 μA	3	25		V
I _R	Reverse Leakage Current	V _R = 5 V		0.001	10	μA
CJ	Junction Capacitance	V _F = 0 V, f = 1 MHz		50		pF
DETECTO	DR		•			
BV _{CEO}	Collector-to-Emitter Breakdown Voltage	I _C = 1.0 mA, I _F = 0	30	85		V
BV _{ECO}	Emitter-to-Collector Breakdown Voltage	I _E = 100 μA, I _F = 0	6	13		V
I _{CEO}	Collector-to-Emitter Dark Current	V _{CE} = 10 V, I _F = 0		5	100	nA
C _{CE}	Capacitance	V _{CE} = 0 V, f = 1 MHz		8		pF

Transfer Characteristics

Symbol	Parameter	Device	Test Conditions	Min.	Тур.	Max.	Unit
DC CHAR	ACTERISTICS						
	CTR Current Transfer Ratio, Collector-to-Emitter	MCT6	I _F = 10 mA, V _{CE} = 10 V	20			
CTR		MCT61	I _F = 5 mA, V _{CF} = 5 V	50			%
		MCT62	IF - 5 IIIA, VCE - 5 V	100			
VCE _(SAT)	Saturation Voltage, Collector-to- Emitter	ALL	I _F = 16 mA, I _C = 2 mA		0.15	0.4	V

AC CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Non-Satu	Non-Saturated					
T _{ON}	Turn-On Time	R_L = 100 Ω, I_C = 2 mA, V_{CC} = 10 V		3.0		μs
T _{OFF}	Turn-Off Time			3.0		μs
T _R	Rise Time			2.4		μs
T _F	Fall Time			2.4		μs
Saturated						
T _{ON}	Turn-On Time	I_F = 16 mA, R_I = 1.9 kΩ, V_{CF} = 5 V		2.4		μs
T _{OFF}	Turn-Off Time] - 10 111A, 1\(\mathbb{L} - 1.9 \text{ K}\(\mathbb{Z}\), \(\mathbb{V} \text{CE} - 3 \text{ V}\)		25.0		μs

Isolation Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{ISO}	Input-Output Isolation Voltage	I _{I-O} ≤ 10 μA, t = 1 Minute	5,000			VAC _{RMS}
C _{ISO}	Isolation Capacitance	f = 1 MHz		0.5		pF
R _{ISO}	Isolation Resistance	V _{I-O} = 500 VDC	10 ¹¹			Ω

Typical Performance Curves

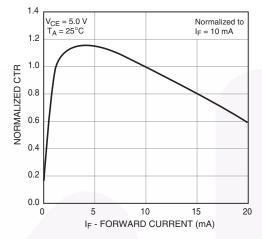


Fig. 3 Normalized CTR vs. Forward Current

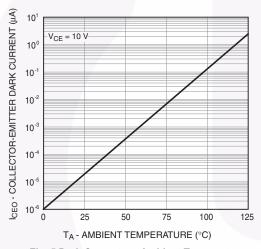


Fig. 5 Dark Current vs. Ambient Temperature

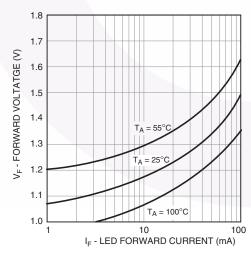


Fig. 7 LED Forward Voltage vs. Forward Current

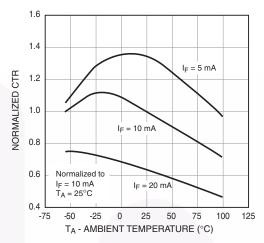


Fig. 4 Normalized CTR vs. Ambient Temperature

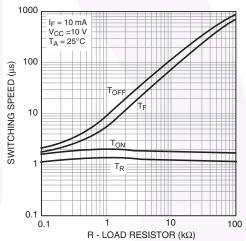


Fig. 6 Switching Speed vs. Load Resistor

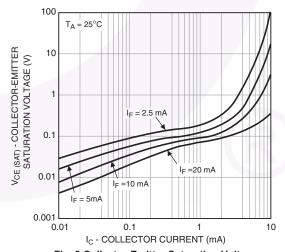


Fig. 8 Collector-Emitter Saturation Voltage vs. Collector Current

Switching Time Test Circuit and Waveforms

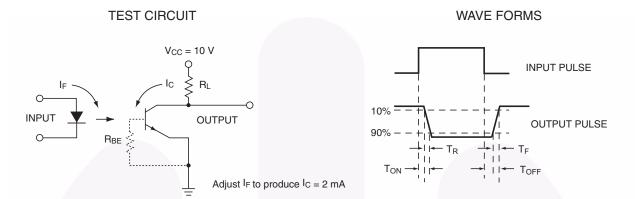
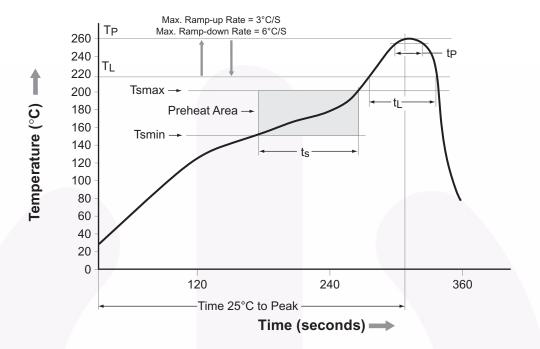



Figure 9. Switching Time Test Circuit and Waveforms

Reflow Profile

Profile Feature	Pb-Free Assembly Profile	
Temperature Min. (Tsmin)	150°C	
Temperature Max. (Tsmax)	200°C	
Time (t _S) from (Tsmin to Tsmax)	60-120 seconds	
Ramp-up Rate (t _L to t _P)	3°C/second max.	
Liquidous Temperature (T _L)	217°C	
Time (t _L) Maintained Above (T _L)	60-150 seconds	
Peak Body Package Temperature	260°C +0°C / -5°C	
Time (t _P) within 5°C of 260°C	30 seconds	
Ramp-down Rate (T _P to T _L)	6°C/second max.	
Time 25°C to Peak Temperature	8 minutes max.	

Ordering Information

Part Number	Package	Packing Method		
МСТ6	DIP 8-Pin	Tube (50 units per tube)		
MCT6S	SMT 8-Pin (Lead Bend)	Tube (50 units per tube)		
MCT6SD	SMT 8-Pin	Tape and Reel (1,000 units per reel)		
MCT6300	DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)		
MCT63S	SMT 8-Pin (Lead Bend); DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)		
MCT63SD	SMT 8-Pin; DIN EN/IEC 60747-5-5 Option	Tape and Reel (1,000 units per reel)		
MCT6300W	0.4" Lead Spacing; DIN EN/IEC 60747-5-5 Option	Tube (50 units per tube)		

Note

1. The product orderable part number system listed in this table also applies to the MCT61 and MCT62.

Marking Information

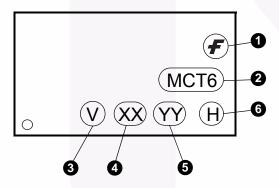
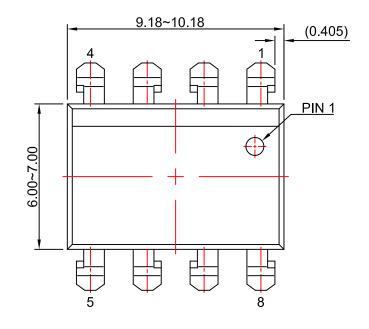
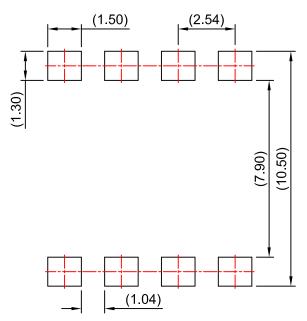
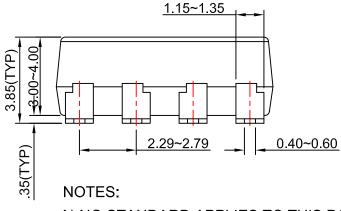
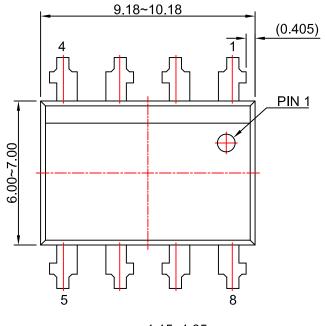
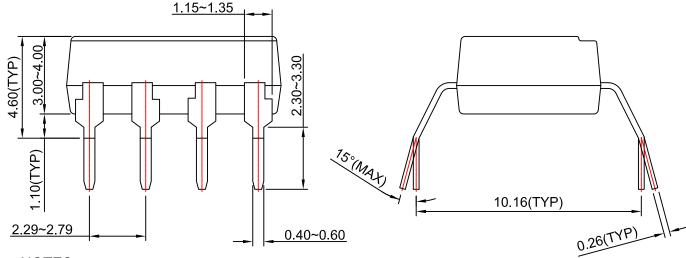




Figure 10. Top Mark

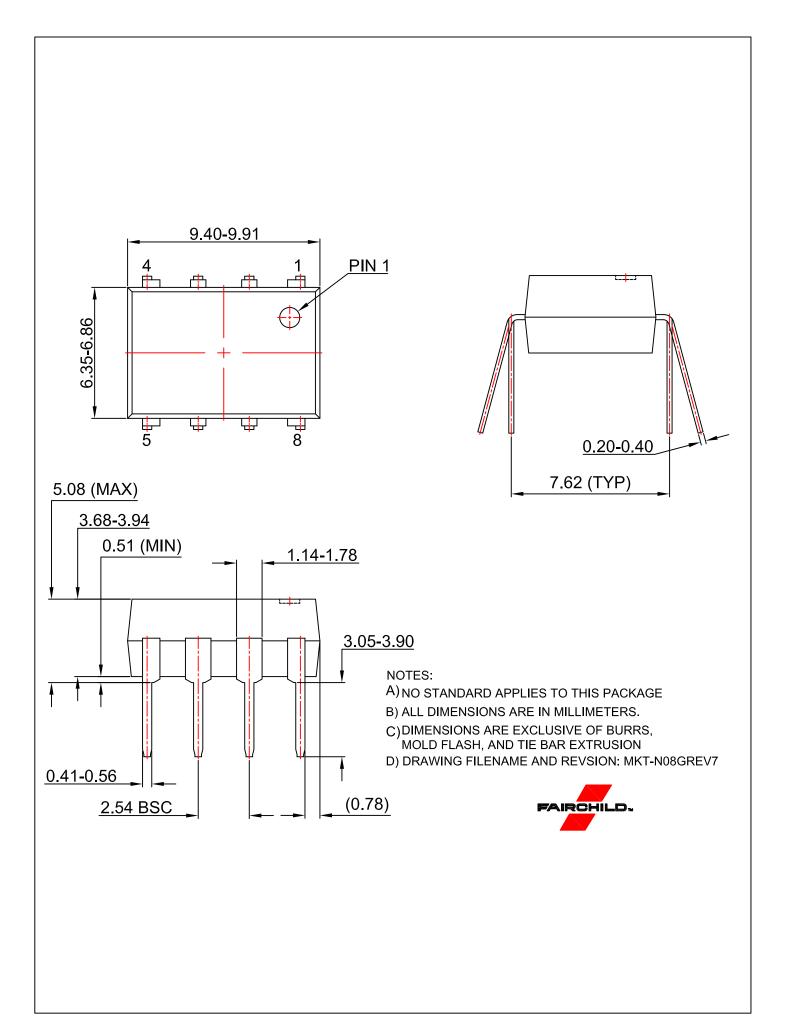

Table 1. Top Mark Definitions

1	Fairchild Logo
2	Device Number
3	DIN EN/IEC60747-5-5 Option (only appears on component ordered with this option)
4	Two-Digit Year Code, e.g., "16"
5	Digit Work Week, Ranging from "01" to "53"
6	Assembly Package Code


LAND PATTERN RECOMMENDATION



- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N08Krev2.



NOTES:

- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION
- D) DRAWING FILENAME AND REVSION: MKT-N08Jrev2.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD2-X006 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILD615-1X007 ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D21068AD WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED