# MJ15022 (NPN), MJ15024 (NPN)

# **Silicon Power Transistors**

The MJ15022 and MJ15024 are power transistors designed for high power audio, disk head positioners and other linear applications.

#### Features

- High Safe Operating Area
- High DC Current Gain
- These Devices are Pb-Free and are RoHS Compliant\*
- Complementary to MJ15023 (PNP), MJ15025 (PNP)

#### MAXIMUM RATINGS

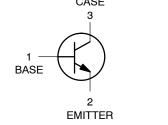
| Rating                                                                | Symbol                            | Value       | Unit      |
|-----------------------------------------------------------------------|-----------------------------------|-------------|-----------|
| Collector–Emitter Voltage<br>MJ15022<br>MJ15024                       | V <sub>CEO</sub>                  | 200<br>250  | Vdc       |
| Collector-Base Voltage<br>MJ15022<br>MJ15024                          | V <sub>CBO</sub>                  | 350<br>400  | Vdc       |
| Emitter-Base Voltage                                                  | V <sub>EBO</sub>                  | 5           | Vdc       |
| Collector-Emitter Voltage                                             | V <sub>CEX</sub>                  | 400         | Vdc       |
| Collector Current – Continuous                                        | Ι <sub>C</sub>                    | 16          | Adc       |
| Collector Current – Peak (Note 1)                                     | I <sub>CM</sub>                   | 30          | Adc       |
| Base Current – Continuous                                             | Ι <sub>Β</sub>                    | 5           | Adc       |
| Total Device Dissipation @ T <sub>C</sub> = 25°C<br>Derate above 25°C | PD                                | 250<br>1.43 | W<br>W/°C |
| Operating and Storage Junction<br>Temperature Range                   | T <sub>J</sub> , T <sub>stg</sub> | -65 to +200 | °C        |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle  $\leq$  10%.

#### THERMAL CHARACTERISTICS

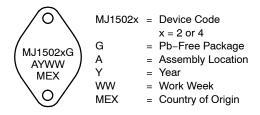
| Characteristics                      | Symbol                | Мах  | Unit |
|--------------------------------------|-----------------------|------|------|
| Thermal Resistance, Junction-to-Case | $R_{	extsf{	heta}JC}$ | 0.70 | °C/W |




## **ON Semiconductor®**

http://onsemi.com

# 16 AMPERES SILICON POWER TRANSISTORS 200 – 250 VOLTS, 250 WATTS


CASE





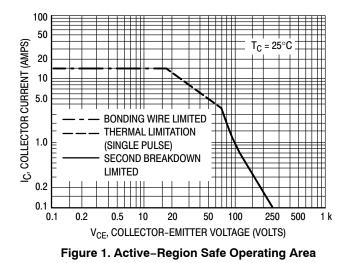


#### MARKING DIAGRAM



### ORDERING INFORMATION

| Device   | Package             | Shipping         |
|----------|---------------------|------------------|
| MJ15022G | TO–204<br>(Pb–Free) | 100 Units / Tray |
| MJ15024G | TO–204<br>(Pb–Free) | 100 Units / Tray |

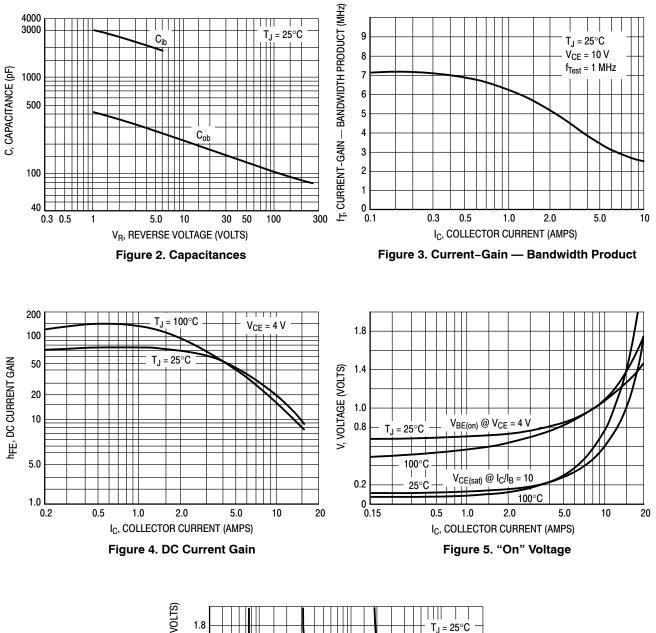

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## MJ15022 (NPN), MJ15024 (NPN)

#### **ELECTRICAL CHARACTERISTICS** (T<sub>C</sub> = 25°C unless otherwise noted)

| Characteristic                                                                                                                                                                  |                    | Symbol                | Min        | Max        | Unit |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|------------|------------|------|
| OFF CHARACTERISTICS                                                                                                                                                             |                    |                       |            |            |      |
| Collector-Emitter Sustaining Voltage (Note 2) $(I_C = 100 \text{ mAdc}, I_B = 0)$                                                                                               | MJ15022<br>MJ15024 | V <sub>CEO(sus)</sub> | 200<br>250 |            | _    |
| Collector Cutoff Current<br>( $V_{CE}$ = 200 Vdc, $V_{BE(off)}$ = 1.5 Vdc)<br>( $V_{CE}$ = 250 Vdc, $V_{BE(off)}$ = 1.5 Vdc)                                                    | MJ15022<br>MJ15024 | I <sub>CEX</sub>      | -          | 250<br>250 | μAdc |
| Collector Cutoff Current<br>( $V_{CE} = 150 \text{ Vdc}, I_B = 0$ )<br>( $V_{CE} = 200 \text{ vdc}, I_B = 0$ )                                                                  | MJ15022<br>MJ15024 | I <sub>CEO</sub>      |            | 500<br>500 | μAdc |
| Emitter Cutoff Current<br>( $V_{CE} = 5 \text{ Vdc}, I_B = 0$ )                                                                                                                 |                    | I <sub>EBO</sub>      | -          | 500        | μAdc |
| SECOND BREAKDOWN                                                                                                                                                                |                    |                       |            |            |      |
| Second Breakdown Collector Current with Base Forward Biased<br>(V <sub>CE</sub> = 50 Vdc, t = 0.5 s (non-repetitive))<br>(V <sub>CE</sub> = 80 Vdc, t = 0.5 s (non-repetitive)) |                    | I <sub>S/b</sub>      | 5<br>2     |            | Adc  |
| ON CHARACTERISTICS                                                                                                                                                              |                    |                       |            |            | -    |
| DC Current Gain<br>( $I_C = 8 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$ )<br>( $I_C = 16 \text{ Adc}, V_{CE} = 4 \text{ Vdc}$ )                                                      |                    | h <sub>FE</sub>       | 15<br>5    | 60<br>-    | _    |
| Collector–Emitter Saturation Voltage<br>( $I_C = 8 \text{ Adc}, I_B = 0.8 \text{ Adc}$ )<br>( $I_C = 16 \text{ Adc}, I_B = 3.2 \text{ Adc}$ )                                   |                    | V <sub>CE(sat)</sub>  |            | 1.4<br>4.0 | Vdc  |
| Base–Emitter On Voltage<br>(I <sub>C</sub> = 8 Adc, V <sub>CE</sub> = 4 Vdc)                                                                                                    |                    | $V_{\text{BE(on)}}$   | _          | 2.2        | Vdc  |
| DYNAMIC CHARACTERISTICS                                                                                                                                                         |                    |                       | -          |            |      |
| Current–Gain – Bandwidth Product<br>(I <sub>C</sub> = 1 Adc, V <sub>CE</sub> = 10 Vdc, f <sub>test</sub> = 1 MHz)                                                               |                    | fT                    | 4          | -          | MHz  |
| Output Capacitance<br>(V <sub>CB</sub> = 10 Vdc, I <sub>E</sub> = 0, f <sub>test</sub> = 1 MHz)                                                                                 |                    | C <sub>ob</sub>       | -          | 500        | pF   |

2. Pulse Test: Pulse Width = 300  $\mu$ s, Duty Cycle  $\leq$  2%.




There are two limitations on the powerhandling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate  $I_C - V_{CE}$  limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on  $T_{J(pk)} = 200^{\circ}$ C;  $T_{C}$  is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values Ion than the limitations imposed by second breakdown.

## MJ15022 (NPN), MJ15024 (NPN)

### **TYPICAL CHARACTERISTICS**



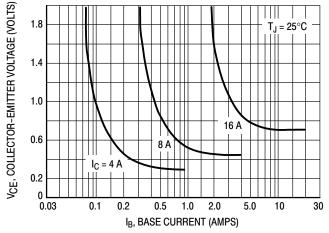



Figure 6. Collector Saturation Region

#### MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS



| DIMENSIONS                                                                                                           |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                              |                    |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| SCALE 1:1                                                                                                            | TO–204 (TO–3)<br>CASE 1–07<br>ISSUE Z                                                                                                                                                                                                                                                                                             | )                                                                                                                                                                                                                                                                                                                                            | DATE 05/18/1988    |
| $ \begin{array}{c}                                     $                                                             | $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                          | NOTES:<br>1. DIMENSIONING AND TC<br>Y14.5M, 1982.<br>2. CONTROLLING DIMENS<br>3. ALL RULES AND NOTES<br>REFERENCED TO-204A<br>MIN MAX<br>A 1.550 REF<br>B 1.050<br>C 0.250 0.335<br>D 0.038 0.043<br>E 0.055 0.070<br>G 0.430 BSC<br>H 0.215 BSC<br>K 0.440 0.480<br>L 0.665 BSC<br>N 0.830<br>Q 0.151 0.165<br>U 1.187 BSC<br>V 0.131 0.188 | ION: INCH.         |
| STYLE 1:<br>PIN 1. BASE<br>2. EMITTER<br>CASE: COLLECTOR<br>STYLE 6:<br>PIN 1. GATE<br>2. EMITTER<br>CASE: COLLECTOR | STYLE 2:         STYLE 3:           PIN 1. BASE         PIN 1. GATE           2. COLLECTOR         2. SOURCE           CASE: EMITTER         CASE: DRAIN           STYLE 7:         STYLE 8:           PIN 1. ANODE         PIN 1. CATHODE #1           2. OPEN         2. CATHODE #2           CASE: CATHODE         CASE: ANODE | STYLE 4: STYLE 5:<br>PIN 1. GROUND<br>2. INPUT<br>CASE: OUTPUT<br>STYLE 9:<br>PIN 1. ANODE #1<br>2. ANODE #2<br>CASE: CATHODE                                                                                                                                                                                                                | E<br>AL TRIP/DELAY |

**ON Semiconductor** and **W** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001