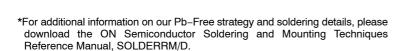
MJD44E3, NJVMJD44E3T4G

Darlington Power Transistor

DPAK For Surface Mount Applications

Designed for general purpose power and switching output or driver stages in applications such as switching regulators, converters, and power amplifiers.


Features

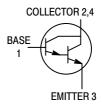
- Electrically Similar to Popular D44E3 Device
- High DC Gain 1000 Min @ 5.0 Adc
- Low Sat. Voltage 1.5 V @ 5.0 Adc
- Compatible With Existing Automatic Pick and Place Equipment
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings:
 - Human Body Model, 3B > 8000 V
 - Machine Model, C > 400 V
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These are Pb-Free Packages*

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Emitter-Base Voltage	V _{EB}	7	Vdc
Collector Current - Continuous	Ic	10	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	20 0.16	W W/°C
Total Power Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	1.75 0.014	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1


ON Semiconductor®

http://onsemi.com

NPN DARLINGTON SILICON POWER TRANSISTORS 10 AMPERES 80 VOLTS, 20 WATTS

DPAK CASE 369C STYLE 1

MARKING DIAGRAM

A = Assembly Location

Y = Year

WW = Work Week

J44E3 = Device Code

G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJD44E3T4G	DPAK (Pb-Free)	2,500 / Tape & Reel
NJVMJD44E3T4G	DPAK (Pb-Free)	2,500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

These ratings are applicable when surface mounted on the minimum pad sizes recommended.

MJD44E3, NJVMJD44E3T4G

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ hetaJC}$	6.25	°C/W
Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{ hetaJA}$	71.4	°C/W
Lead Temperature for Soldering	TL	260	°C

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•	•	
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , V _{BE} = 0)	I _{CES}	-	_	10	μΑ
Emitter Cutoff Current (V _{EB} = 7 Vdc)	ГЕВО	-	-	1	μΑ
ON CHARACTERISTICS					
Collector-Emitter Saturation Voltage (I _C = 5 Adc, I _B = 10 mAdc) (I _C = 10 Adc, I _B = 20 mAdc)	V _{CE(sat)}	- -	- -	1.5 2	Vdc
Base–Emitter Saturation Voltage (I _C = 5 Adc, I _B = 10 mAdc)	V _{BE(sat)}	-	-	2.5	Vdc
DC Current Gain (V _{CE} = 5 Vdc, I _C = 5 Adc)	h _{FE}	1000	-	-	_
DYNAMIC CHARACTERISTICS					
Collector Capacitance (V _{CB} = 10 Vdc, f _{test} = 1 MHz)	C _{cb}	-	-	130	pF
SWITCHING TIMES			•	•	
Delay and Rise Times (I _C = 10 Adc, I _{B1} = 20 mAdc)	t _d + t _r	-	0.6	-	μs
Storage Time (I _C = 10 Adc, I _{B1} = I _{B2} = 20 mAdc)	t _s	-	2	_	μs
Fall Time (I _C = 10 Adc, I _{B1} = I _{B2} = 20 mAdc)	t _f	-	0.5	-	μs

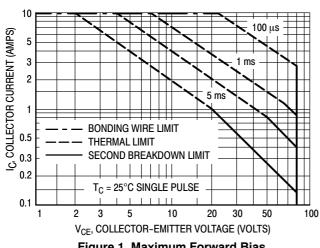


Figure 1. Maximum Forward Bias Safe Operating Area

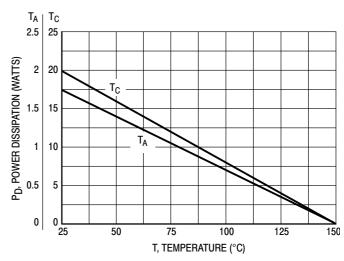
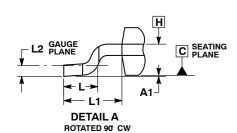
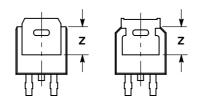


Figure 2. Power Derating


DPAK (SINGLE GAUGE)

CASE 369C **ISSUE F**

DATE 21 JUL 2015


Α -h3 L3 \cap DETAIL A **BOTTOM VIEW** b₂ C е SIDE VIEW

TOP VIEW

2. MT2

0.005 (0.13) M C

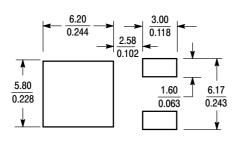
BOTTOM VIEW ALTERNATE CONSTRUCTIONS

2. ANODE

3. CATHODE 4. ANODE

3. RESISTOR ADJUST

2. CATHODE


4. CATHODE

STYLE 1: PIN 1. BASE 2. COLLI 3. EMITT 4. COLLI	ECTOR FER	STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN	STYLE 3: PIN 1. ANODE 2. CATHOI 3. ANODE 4. CATHOI	DE 2. ANODE 3. GATE	STYLE 5: PIN 1. GATE 2. ANODE 3. CATHODE 4. ANODE
STYLE 6: PIN 1 MT1	STYLE 7:		'LE 8:	STYLE 9: PIN 1 ANODE	STYLE 10: PIN 1 CATHODE

2. CATHODE

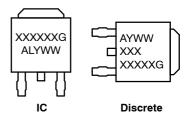
3. GATE 4. MT2 3. EMITTER 4. COLLECTOR 3. ANODE 4. CATHODE

2. COLLECTOR

SOLDERING FOOTPRINT*

 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1

NOTES:


Z

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.
 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90	REF	
L2	0.020 BSC		0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α L = Wafer Lot Υ = Year WW = Work Week = Pb-Free Package G

ON Semiconductor and una are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

^{*}This information is generic. Please refer to device data sheet for actual part marking

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON10527D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION: DPAK (SINGLE GAUGE)** PAGE 1 OF 1

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Darlington Transistors category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383

ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27

MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244

NTE247 NTE248 NTE248 NTE253 NTE2548 NTE261