MJF3055 (NPN), MJF2955 (PNP)

Complementary Silicon Power Transistors

Specifically designed for general purpose amplifier and switching applications.

Features

- Isolated Overmold Package (1500 Volts RMS Min)
- Electrically Similar to the Popular MJE3055T and MJE2955T
- Collector-Emitter Sustaining Voltage V_{CEO(sus)} 90 Volts
- 10 Amperes Rated Collector Current
- No Isolating Washers Required
- Reduced System Cost
- UL Recognized, File #E69369, to 3500 V_{RMS} Isolation
- Epoxy Meets UL 94 V-0 at 0.125 in
- ESD Ratings: Machine Model, C; >400 V Human Body Model, 3B; >8000 V
- Pb-Free Packages are Available*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V _{CEO(sus)}	90	Vdc
Collector-Emitter Breakdown Voltage	V _{CES}	90	Vdc
Base-Emitter Voltage	V _{EBO}	5.0	Vdc
Collector Current – Continuous	۱ _C	10	Adc
Base Current - Continuous	Ι _Β	6.0	Adc
RMS Isolation Voltage (Note 3) (t = 0.3 sec, R.H. \leq 30%, T _A = 25°C) Per Figure 5	V _{ISOL}	4500	V _{RMS}
Total Power Dissipation @ T _C = 25°C (Note 2) Derate above 25°C	PD	30 0.25	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2.0 0.016	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case (Note 2)	$R_{\theta JC}$	4.0	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	62.5	°C/W
Lead Temperature for Soldering Purposes	Τι	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.
- 2. Measurement made with thermocouple contacting the bottom insulated surface (in a location beneath the die), the devices mounted on a heatsink with thermal grease and a mounting torque of ≥ 6 in. lbs.
- 3. Proper strike and creepage distance must be provided.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor®

http://onsemi.com

COMPLEMENTARY SILICON POWER TRANSISTORS 10 AMPERES 90 VOLTS, 30 WATTS

MARKING DIAGRAM

= Pb-Free Package

- = Assembly Location
- A = Asse Y = Year

G

WW = Work Week

ORDERING INFORMATION

Device	Package	Shipping
MJF2955	TO-220 FULLPACK	50 Units/Rail
MJF2955G	TO-220 FULLPACK (Pb-Free)	50 Units/Rail
MJF3055	TO-220 FULLPACK	50 Units/Rail
MJF3055G	TO-220 FULLPACK (Pb-Free)	50 Units/Rail

MJF3055 (NPN), MJF2955 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS (Note 4)				
Collector-Emitter Sustaining Voltage $(I_C = 200 \text{ mAdc}, I_B = 0)$	V _{CEO(sus)}	90	-	Vdc
Collector Cutoff Current (V _{CE} = 90 Vdc, V _{BE} = 0)	I _{CES}	-	1.0	μAdc
Collector Cutoff Current (V _{CE} = 90 Vdc, I _E = 0)	I _{CBO}	-	1.0	μAdc
Emitter-Base Leakage (V _{EB} = 5.0 Vdc, I _C = 0)	I _{EBO}	-	1.0	μAdc
ON CHARACTERISTICS (Note 4)				
DC Current Gain $(I_{CE} = 4.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$ $(I_{CE} = 10 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc})$	h _{FE}	20 5.0	100 -	-
Collector-Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}, I_B = 0.4 \text{ Adc}$) ($I_C = 10 \text{ Adc}, I_B = 3.3 \text{ Adc}$)	V _{CE(sat)}		1.0 2.5	Vdc
Base–Emitter On Voltage (I _C = 4.0 Adc, V _{BE} = 4.0 Vdc)	V _{BE(on)}	-	1.5	Vdc
DYNAMIC CHARACTERISTICS				
Current–Gain–Bandwidth Product (V _{CE} = 10 Vdc, I _C = 0.5 Adc, f _{test} = 500 kHz)	fT	2.0	-	MHz

4. Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

MJF3055 (NPN), MJF2955 (PNP)

Figure 3. "On" Voltages

Figure 4. Power Derating

MJF3055 (NPN), MJF2955 (PNP)

TEST CONDITIONS FOR ISOLATION TESTS*

FULLY ISOLATED PACKAGE

Figure 5. Mounting Position

*Measurement made between leads and heatsink with all leads shorted together.

MOUNTING INFORMATION

Figure 6. Typical Mounting Techniques*

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in \cdot lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in lbs of mounting torque under any mounting conditions.

** For more information about mounting power semiconductors see Application Note AN1040.

DOCUMENT NUMBER:	98ASB42514B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-220 FULLPAK		PAGE 1 OF 1	
ON Semiconductor and 🕕 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding				

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15 NTE16001