Zener Voltage Regulators

500 mW, Low Iz SOD-523 Surface Mount MM5Z4xxxTxG Series, SZMM5Z4xxxTxG Series

This series of Zener diodes is packaged in a SOD-523 surface mount package. They are designed to provide voltage regulation protection and are especially attractive in situations where space is at a premium. They are well suited for applications such as cellular phones, hand held portables, and high density PC boards.

Features

- 500 mW Rating on FR-4 or FR-5 Board
- Wide Zener Reverse Voltage Range -1.8 V to 43 V
- Low Reverse Current (IZT) - $50 \mu \mathrm{~A}$
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- ESD Rating of Class 3 (> 16 kV) per Human Body Model
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
POLARITY: Cathode indicated by polarity band
FLAMMABILITY RATING: UL 94 V-0

MAXIMUM RATINGS

Rating	Symbol	Max	Units
Total Power Dissipation on FR-5 Board, (Note 1) @ $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$	P_{D}	500	mW Derated above $75^{\circ} \mathrm{C}$
Thermal Resistance, (Note 2) Junction-to-Ambient	$\mathrm{R}_{\text {日JA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $\mathrm{FR}-5=3.5 \times 1.5$ inches, using the minimum recommended footprint.
2. Thermal Resistance measurement obtained via infrared Scan Method.

[^0]SOD-523
CASE 502
STYLE 1
Cathode \quad Anode

MARKING DIAGRAM

XX = Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
MM5Z4xxxT1G	SOD-523 (Pb-Free)	$3,000 /$ Tape \& Reel
SZMM5Z4xxxT1G	SOD-523 (Pb-Free)	$3,000 /$ Tape \& Reel
MM5Z4xxxT5G	SOD-523 (Pb-Free)	$8,000 /$ Tape \& Reel
SZMM5Z4xxxT5G	SOD-523 (Pb-Free)	$8,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.

MM5Z4xxxTxG Series, SZMM5Z4xxxTxG Series

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless
otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V} \mathrm{Max}$. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted.
Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max. @ $\left.\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$

Device*	Device Marking	Zener Voltage (Note 3)				Leakage Current$\mathrm{I}_{\mathbf{R}} @ \mathrm{~V}_{\mathbf{R}}$	
		V_{Z} (Volts)			@ İT		
		Min	Nom	Max	$\mu \mathrm{A}$	$\mu \mathrm{A}$	Volts
MM5Z4678T1G/T5G*	4A	1.71	1.8	1.89	50	7.5	1
MM5Z4679T1G/T5G*	42	1.90	2.0	2.10	50	5	1
MM5Z4680T1G/T5G	4 C	2.09	2.2	2.31	50	4	1
MM5Z4681T1G/T5G*	4D	2.28	2.4	2.52	50	2	1
MM5Z4682T5G	4E	2.565	2.7	2.835	50	1	1
MM5Z4683T1G/T5G*	4F	2.85	3.0	3.15	50	0.8	1
MM5Z4684T1G/T5G*	4G	3.13	3.3	3.47	50	7.5	1.5
MM5Z4685T1G/T5G	4 H	3.42	3.6	3.78	50	7.5	2
MM5Z4686T1G/T5G	43	3.70	3.9	4.10	50	5	2
MM5Z4687T1G/T5G	4 J	4.09	4.3	4.52	50	4	2
MM5Z4688T1G/T5G	4K	4.47	4.7	4.94	50	10	3
MM5Z4689T1G/T5G	4L	4.85	5.1	5.36	50	10	3
MM5Z4690T1G/T5G	4M	5.32	5.6	5.88	50	10	4
MM5Z4691T1G/T5G*	4 N	5.89	6.2	6.51	50	10	5
MM5Z4692T1G/T5G*	44	6.46	6.8	7.14	50	10	5.1
MM5Z4693T1G/T5G	4P	7.13	7.5	7.88	50	10	5.7
MM5Z4694T5G	4Q	7.79	8.2	8.61	50	1	6.2
MM5Z4695T1G/T5G*	4R	8.27	8.7	9.14	50	1	6.6
MM5Z4696T1G/T5G*	45	8.65	9.1	9.56	50	1	6.9
MM5Z4697T1G/T5G	4 T	9.50	10	10.50	50	1	7.6
MM5Z4698T1G/T5G*	4 U	10.45	11	11.55	50	0.05	8.4
MM5Z4699T5G	4 V	11.40	12	12.60	50	0.05	9.1
MM5Z4700T1G/T5G*	4W	12.35	13	13.65	50	0.05	9.8
MM5Z4701T1G/T5G*	4X	13.30	14	14.70	50	0.05	10.6
MM5Z4702T5G	4Y	14.25	15	15.75	50	0.05	11.4
MM5Z4703T1G/T5G*	4 Z	15.20	16	16.80	50	0.05	12.1
MM5Z4704T1G/T5G*	46	16.15	17	17.85	50	0.05	12.9
MM5Z4705T1G/T5G	47	17.10	18	18.90	50	0.05	13.6
MM5Z4706T1G/T5G*	5A	18.05	19	19.95	50	0.05	14.4
MM5Z4707T1G/T5G*	5 C	19.00	20	21.00	50	0.01	15.2
MM5Z4708T1G/T5G*	5F	20.90	22	23.10	50	0.01	16.7
MM5Z4709T1G/T5G	5G	22.80	24	25.20	50	0.01	18.2
MM5Z4710T1G/T5G*	5H	23.75	25	26.25	50	0.01	19.0
MM5Z4711T1G/T5G	5K	25.65	27	28.35	50	0.01	20.4
MM5Z4712T1G/T5G*	5L	26.60	28	29.40	50	0.01	21.2
MM5Z4713T1G/T5G*	5N	28.50	30	31.50	50	0.01	22.8
MM5Z4714T1G/T5G	5P	31.35	33	34.65	50	0.01	25.0
MM5Z4715T1G/T5G	5Q	34.20	36	37.80	50	0.01	27.3
MM5Z4716T1G/T5G*	5R	37.05	39	40.95	50	0.01	29.6
MM5Z4717T1G/T5G	5 T	40.85	43	45.15	50	0.01	32.6

[^1]TYPICAL CHARACTERISTICS

Figure 1. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 3. Steady State Power Derating

Figure 2. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 4. Maximum Nonrepetitive Surge Power

Figure 5. Effect of Zener Voltage on Zener Impedance

MM5Z4xxxTxG Series, SZMM5Z4xxxTxG Series

TYPICAL CHARACTERISTICS

Figure 6. Typical Capacitance

Figure 8. Zener Voltage versus Zener Current (V_{Z} Up to 12 V)

Figure 7. Typical Leakage Current

Figure 9. Zener Voltage versus Zener Current (12 V to 91 V)

SOD-523
CASE 502-01
ISSUE E
DATE 28 SEP 2010
STYLE 1 STYLE 2

BOTTOM VIEW

RECOMMENDED
 SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH

MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF MINIMUM LEAD T
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS

	MILLIMETERS				
DIM	MIN	NOM	MAX		
A	0.50	0.60	0.70		
b	0.25	0.30	0.35		
c	0.07	0.14	0.20		
D	1.10	1.20	1.30		
E	0.70	0.80	0.90		
HE	1.50	1.60			1.70
L	0.30 REF				
L2	0.15	0.20			

GENERIC
MARKING DIAGRAM*

STYLE 1

STYLE 2

XX = Specific Device Code
M Date Code
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

STYLE 1:
PIN 1. CATHODE (POLARITY BAND STYLE 2: 2. ANODE

| DOCUMENT NUMBER: | 98AON11524D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOD-523 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Zener Diodes category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
RKZ13B2KG\#P1 DL5234B EDZTE6113B 1N4682 1N4691 1N4693 1N4732A 1N4733A-TR 1N4736A 1N4750A 1N4759ARL 1N5241B
1N5365B 1N5369B 1N747A 1N959B 1N964B 1N966B 1N972B NTE149A NTE5116A NTE5121A NTE5147A NTE5152A NTE5155A
NTE5164A JANS1N4974US 1N4692 1N4700 1N4702 1N4704 1N4711 1N4714 1N4737A 1N4745ARL 1N4752A 1N4752ARL
1N4760ARL 1N5221B 1N5236B 1N5241BTR 1N5242BTR 1N5350B 1N5352B 1N961BRR1 1N964BRL RKZ5.1BKU\#P6
3SMAJ5950B-TP 3SMBJ5925B-TP TDZTR24

[^0]: *For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: 3. Nominal Zener voltage is measured with the device junction in thermal equilibrium at $\mathrm{T}_{\mathrm{L}}=30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
 *Please Contact Sales.
