

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

February 2008

MM74HC132 **Quad 2-Input NAND Schmitt Trigger**

Features

■ Typical propagation delay: 12ns ■ Wide power supply range: 2V–6V

■ Low quiescent current: 20µA maximum (74HC Series)

■ Low input current: 1µA maximum ■ Fanout of 10 LS-TTL loads

■ Typical hysteresis voltage: 0.9V at V_{CC} = 4.5V

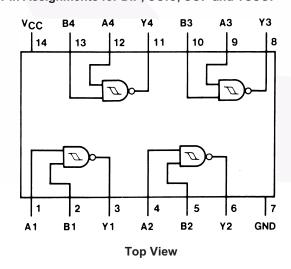
General Description

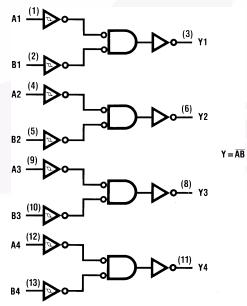
The MM74HC132 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

The 74HC logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Ordering Information

Order Number	Package Number	Package Description
MM74HC132M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC132SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC132MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC132N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.


All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Logic Diagram

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5 to +7.0V
V _{IN}	DC Input Voltage	-1.5 to V _{CC} +1.5V
V _{OUT}	DC Output Voltage	-0.5 to V _{CC} +0.5V
I _{IK} , I _{OK}	Clamp Diode Current	±20mA
I _{OUT}	DC Output Current, per pin	±25mA
I _{CC}	DC V _{CC} or GND Current, per pin	±50mA
T _{STG}	Storage Temperature Range	−65°C to +150°C
P _D	Power Dissipation Note 2	600mW
	S.O. Package only	500mW
TL	Lead Temperature (Soldering 10 seconds)	260°C

Notes:

- 1. Unless otherwise specified all voltages are referenced to ground.
- 2. Power Dissipation temperature derating plastic "N" package: -12mW/°C from 65°C to 85°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage	2	6	V
V_{IN}, V_{OUT}	DC Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature Range	-40	+85	°C

DC Electrical Characteristics⁽³⁾

				T _A =	25°C	T _A = -40°C to 85°C	T _A = -40°C to 125°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.		Guaranteed Limits		Units
V _{T+}	Positive Going	2.0	Min.		1.0	1.0	1.0	V
	Threshold Voltage	4.5			2.0	2.0	2.0	
		6.0			3.0	3.0	3.0	
		2.0	Max.		1.5	1.5	1.5	
		4.5			3.15	3.15	3.15	
		6.0			4.2	4.2	4.2	1
V _T	Negative Going	2.0	Min.		0.3	0.3	0.3	V
	Threshold Voltage	4.5			0.9	0.9	0.9	
		6.0			1.2	1.2	1.2	
		2.0	Max.		1.0	1.0	1.0	
		4.5			2.2	2.2	2.2	1
		6.0			3.0	3.0	3.0	1
V _H	Hysteresis Voltage	2.0	Min.		0.2	0.2	0.2	V
		4.5			0.4	0.4	0.4	1
		6.0			0.5	0.5	0.5	
		2.0	Max.		1.0	1.0	1.0	
		4.5			1.4	1.4	1.4	
		6.0			1.5	1.5	1.5	
V _{OH}	Minimum HIGH Level Output Voltage	2.0	$V_{IN} = V_{IH}$ or V_{IL} ,	2.0	1.9	1.9	1.9	V
		4.5	I _{OUT} ≤ 20 μA	4.5	4.4	4.4	4.4	
		6.0		6.0	5.9	5.9	5.9	1
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{ mA}$	4.2	3.98	3.84	3.7	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{ mA}$	5.7	5.48	5.34	5.2	
V _{OL}	Maximum LOW Level	2.0	$V_{IN} = V_{IH}$ or V_{IL} ,	0	0.1	0.1	0.1	V
	Output Voltage	4.5	I _{OUT} ≤ 20μA	0	0.1	0.1	0.1	
		6.0		0	0.1	0.1	0.1	
		4.5	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 4.0 \text{mA}$	0.2	0.26	0.33	0.4	
		6.0	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $ I_{OUT} \le 5.2 \text{mA}$	0.2	0.26	0.33	0.4	
I _{IN}	Maximum Input Current	6.0	$V_{IN} = V_{CC}$ or GND		±0.1	±1.0	±1.0	μA
I _{CC}	Maximum Quiescent Supply Current	6.0	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0\mu A$,	2.0	20	40	μА

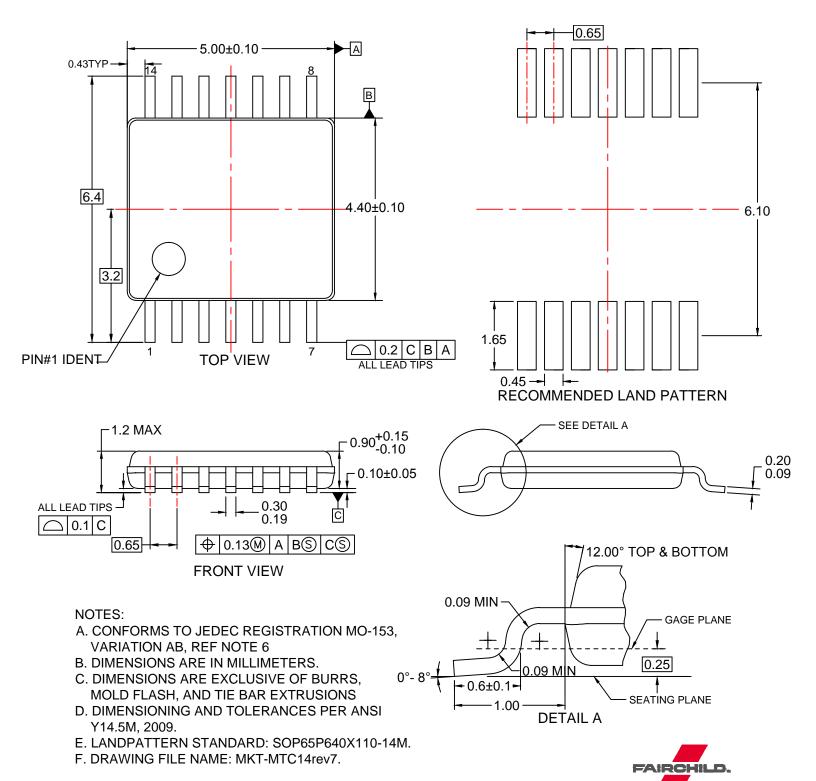
Note

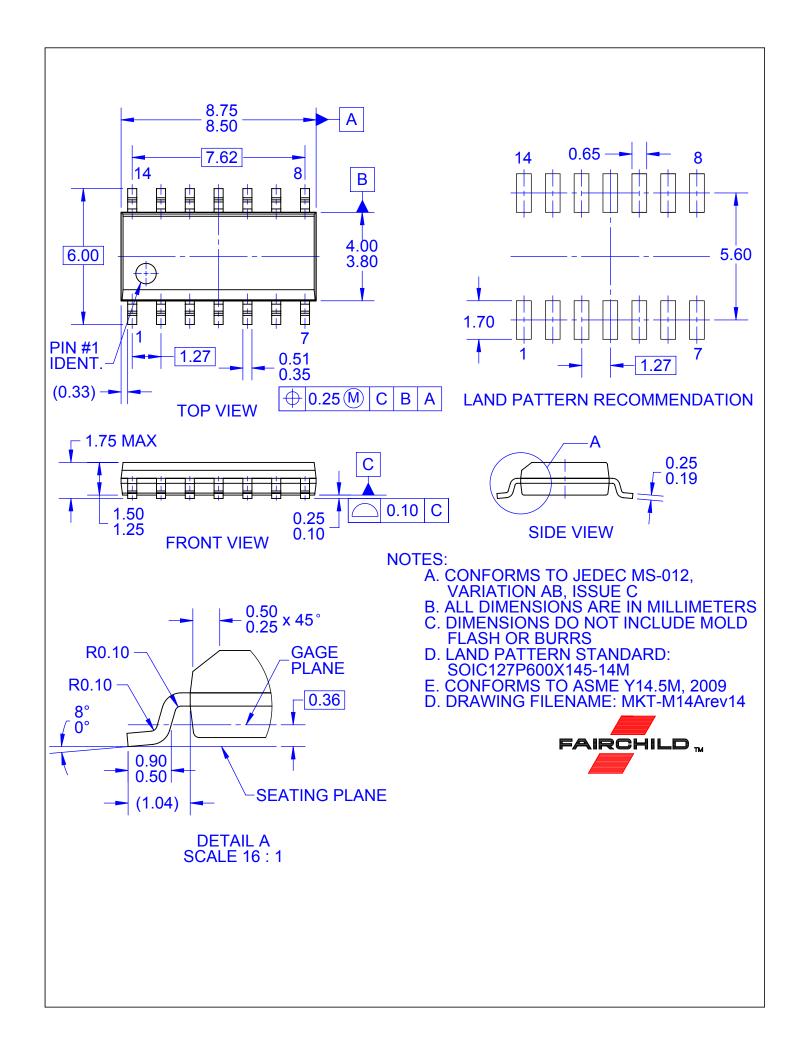
3. For a power supply of 5V $\pm 10\%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC}=5V,\,T_A=25^{\circ}C,\,C_L=15pF,\,t_r=t_f=6ns$

Symbol	Parameter	Conditions	Тур.	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		12	20	ns


AC Electrical Characteristics


 V_{CC} = 2.0V to 6.0V, C_L = 50pF, t_r = t_f = 6ns (unless otherwise specified)

				T _A =	25°C	T _A = -40°C to 85°C	T _A = -55°C to 125°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Guaranteed Limits			Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay	2.0		63	125	158	186	ns
		4.5		13	25	32	37	
		6.0		11	21	27	32	1
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time	2.0		30	75	95	110	ns
Ris		4.5		8	15	19	22	
		6.0		7	13	16	19	
C _{PD}	Power Dissipation Capacitance ⁽⁴⁾		(per gate)	130				pF
C _{IN}	Maximum Input Capacitance				5	10	10	pF

Note

4. C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \, V_{CC}^{\ 2} \, f + I_{CC} \, V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \, V_{CC} \, f + I_{CC}$.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Logic Gates category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

 74HC85N
 NLU1G32AMUTCG
 CD4068BE
 NL17SG32P5T5G
 NL17SG86DFT2G
 NLV14001UBDR2G
 NLX1G11AMUTCG

 NLX1G97MUTCG
 74LS38
 74LVC32ADTR2G
 MC74HCT20ADTR2G
 NLV17SZ00DFT2G
 NLV17SZ02DFT2G
 NLV74HC02ADR2G

 74HC32S14-13
 74LS133
 74LVC1G32Z-7
 M38510/30402BDA
 74LVC1G86Z-7
 74LVC2G08RA3-7
 NLV74HC08ADTR2G

 NLV74HC14ADR2G
 NLV74HC20ADR2G
 NLX2G86MUTCG
 5962-8973601DA
 74LVC2G02HD4-7
 NLU1G00AMUTCG

 74LVC2G32RA3-7
 74LVC2G00HD4-7
 NL17SG02P5T5G
 74LVC2G00HK3-7
 74LVC2G86HK3-7
 NL17SG08DFT2G

 NLX1G99DMUTWG
 NLVVHC1G00DFT2G
 NLVHC1G08DFT2G
 NLV7SZ57DFT2G
 NLV74VHC04DTR2G
 NLV27WZ86USG

 NLV27WZ00USG
 NLU1G86CMUTCG
 NLU1G08CMUTCG
 NL17SZ32P5T5G
 NL17SZ00P5T5G
 NL17SH02P5T5G
 74AUP2G00RA3-7

 NLV74HC02ADTR2G
 NLX1G332CMUTCG
 NL17SG86P5T5G
 NL17SZ05P5T5G
 NL17SZ05P5T5G