

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

MM74HC245A Octal 3-STATE Transceiver

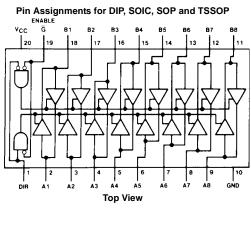
General Description

The MM74HC245A 3-STATE bidirectional buffer utilizes advanced silicon-gate CMOS technology, and is intended for two-way asynchronous communication between data buses. It has high drive current outputs which enable high speed operation even when driving large bus capacitances. This circuit possesses the low power consumption and high noise immunity usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL circuits.

This device has an active LOW enable input \overline{G} and a direction control input, DIR. When DIR is HIGH, data flows from the A inputs to the B outputs. When DIR is LOW, data flows from the B inputs to the A outputs. The MM74HC245A transfers true data from one bus to the other.

This device can drive up to 15 LS-TTL Loads, and does not have Schmitt trigger inputs. All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.

Features

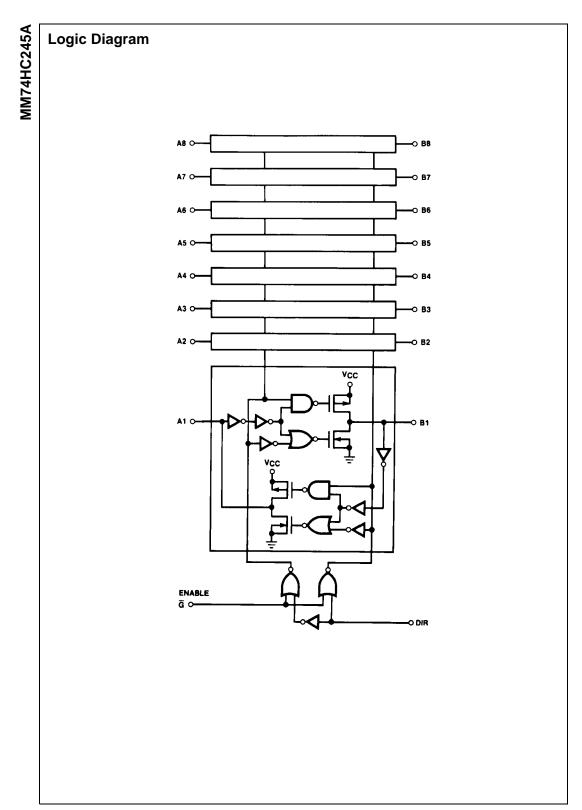

- Typical propagation delay: 13 ns
- Wide power supply range: 2–6V
- Low quiescent current: 80 μA maximum (74 HC)
- 3-STATE outputs for connection to bus oriented systems
- High output drive: 6 mA (minimum)
- Same as the 645

Ordering Code:

Order Number Package Number		Package Description
MM74HC245AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC245ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC245AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC245AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Co	ntrol	
Inputs		Operation
G	DIR	
L	L	B data to A bus
L	н	A data to B bus
н	х	Isolation

H = HIGH LevelL = LOW Level X = Irrelevant

Truth Table

© 2005 Fairchild Semiconductor Corporation DS005165

Absolute Maximum Ratings(Note 1) (Note 2)

Recommended Operating Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage DIR and \overline{G} pins (V _{IN})	–1.5 to V _{CC} +1.5V
DC Input/Output Voltage (V _{IN} , V _{OUT})	–0.5 to V_CC +0.5V
Clamp Diode Current (I _{CD})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

	Min	Max	Units		
Supply Voltage (V _{CC})		6	V		
DC Input or Output Voltage					
(V _{IN} , V _{OUT})	0	V _{CC}	V		
Operating Temperature Range (T _A)	-40	+85	°C		
Input Rise/Fall Times					
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns		
$V_{CC} = 4.5V$		500	ns		
$V_{CC} = 6.0V$		400	ns		
Note 1: Maximum Ratings are those values beyond which damage to the device may occur.					

MM74HC245A

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

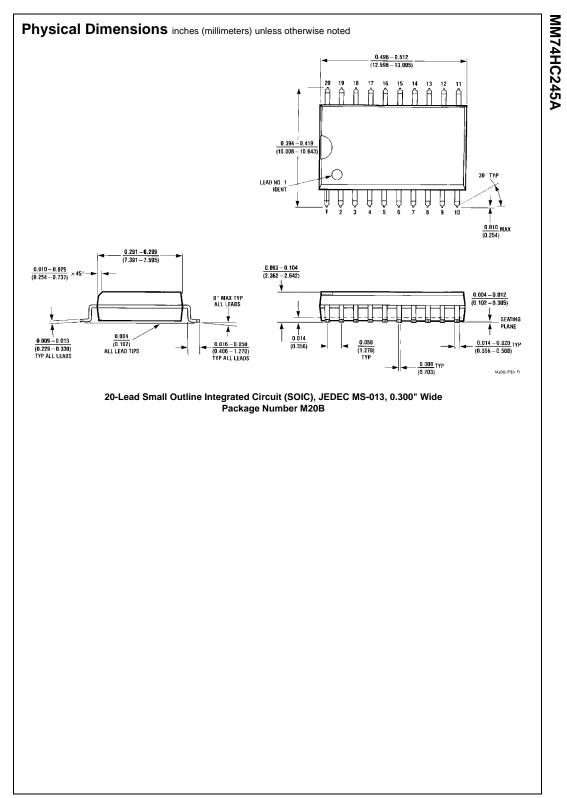
Symbol	Parameter	Conditions	Vcc	T _A = 25°C		$T_A = -40$ to 85°C $T_A = -55$ to 125°		; Units
Symbol			•cc	Тур		Guaranteed L	nteed Limits	
V _{IH}	Minimum HIGH Level Input		2.0V		1.5	1.5	1.5	V
	Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Level Input		2.0V		0.5	0.5	0.5	V
	Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level Output	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Input Leakage	$V_{IN} = V_{CC}$ to GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current (G and DIR)							
I _{OZ}	Maximum 3-STATE Output	$V_{OUT} = V_{CC}$ or GND	6.0V		±0.5	±5.0	±10	μΑ
	Leakage Current	Enable $\overline{G} = V_{IH}$						
I _{CC}	Maximum Quiescent Supply	V _{IN} = V _{CC} or GND	6.0V		8.0	80	160	μΑ
	Current	I _{OUT} = 0 μA						

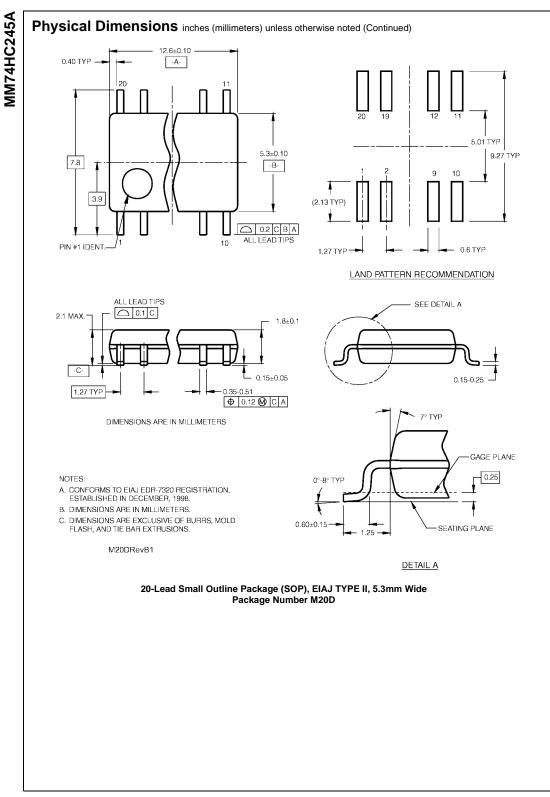
DC Electrical Characteristics (Note 4)

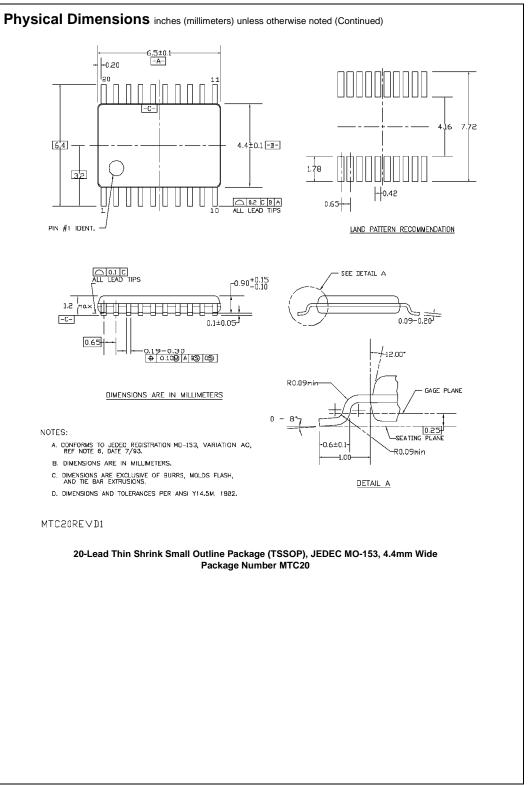
◄
ι <u>Ω</u>
4
2
C
Т
4
~
5
Σ

AC Electrical Characteristics

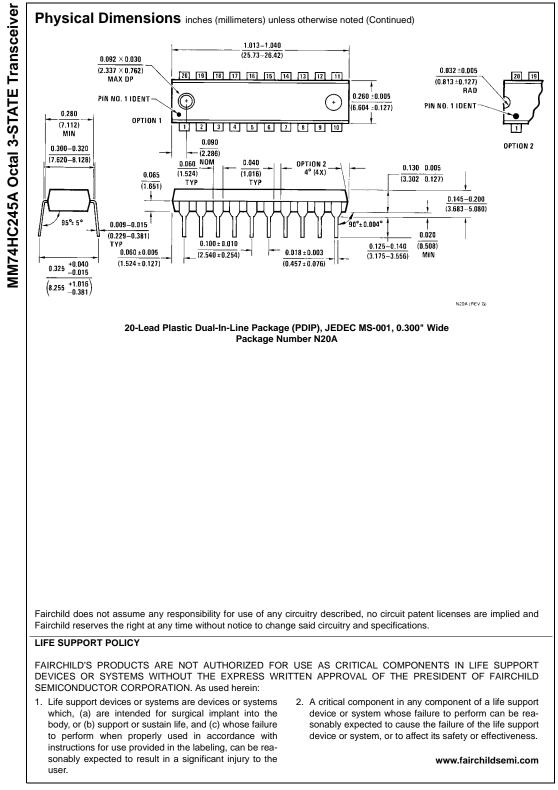
 $V_{CC} = 5V, T_A = 25^{\circ}C, t_r = t_f = 6ns$


$V_{CC} = 5V, T_{A} = 25 C, t_{f} = 0.05$						
Symbol Parameter		Conditions	Тур	Guaranteed Limit	Units	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	C _L = 45 pF	12	17	ns	
t _{PZH} , t _{PZL}		$R_L = 1 \ k\Omega$	24	35	ns	
	Time	$C_L = 45 \text{ pF}$				
t _{PHZ} , t _{PLZ}	Maximum Output Disable	$R_L = 1 \ k\Omega$	18	25	ns	
	Time	$C_L = 5 \text{ pF}$				


AC Electrical Characteristics


 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6ns (unless otherwise specified)

Symbol	Parameter	Conditions	V _{cc}	T _A = 25 °C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol			• CC	Тур	Guaranteed Limits			Units
t _{PHL} ,	Maximum Propagation	C _L = 50 pF	2.0V	31	90	113	135	ns
t _{PLH}	Delay	C _L = 150 pF	2.0V	41	96	116	128	ns
		$C_L = 50 \text{ pF}$	4.5V	13	18	23	27	ns
		C _L = 150 pF	4.5V	17	22	28	33	ns
		C _L = 50 pF	6.0V	11	15	19	23	ns
		C _L = 150 pF	6.0V	14	19	23	28	ns
t _{PZH} ,	Maximum Output Enable	$R_L = 1 k\Omega$						
t _{PZL}	Time	C _L = 50 pF	2.0V	71	190	240	285	ns
		C _L = 150 pF	2.0V	81	240	300	360	ns
		C _L = 50 pF	4.5V	26	38	48	57	ns
		C _L = 150 pF	4.5V	31	48	60	72	ns
		C _L = 50 pF	6.0V	21	32	41	48	ns
		C _L = 150 pF	6.0V	25	41	51	61	ns
t _{PHZ} ,	Maximum Output Disable	$R_L = 1 k\Omega$	2.0V	39	135	169	203	ns
t _{PLZ}	Time	C _L = 50 pF	4.5V	20	27	34	41	ns
			6.0V	18	23	29	34	ns
t _{TLH} , t _{THL}	Output Rise and Fall Time	C _L =50 pF	2.0V	20	60	75	90	ns
			4.5V	6	12	15	18	ns
			6.0V	5	10	13	15	ns
C _{PD}	Power Dissipation	$\overline{G} = V_{IL}$		50				pF
	Capacitance (Note 5)	$\overline{G} = V_{IH}$		5				pF
CIN	Maximum Input Capacitance			5	10	10	10	pF
C _{IN/OUT}	Maximum Input/Output			15	20	20	20	pF
	Capacitance, A or B							


Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f_{+1} C_C V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f_{+1} I_{CC}$.

MM74HC245A

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bus Transceivers category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

 74LS645N
 PI74LVCC3245AS
 5962-8683401DA
 5962-8968201LA
 5962-8953501KA
 5962-86834012A
 5962-7802002MFA

 TC74VCX164245(EL,F
 MC74LCX245MNTWG
 TC7WPB8306L8X,LF(S
 MM74HC245AMTCX
 74LVX245MTC
 74ALVC16245MTDX

 74LCXR162245MTX
 74LVXC3245MTCX
 74VHC245M
 JM38510/65553BRA
 FXL2TD245L10X
 74LVC1T45GM,115

 74LVC245ADTR2G
 TC74AC245P(F)
 SNJ54LS245FK
 74LVT245BBT20-13
 74AHC245D.112
 74AHCT245D.112

 SN74LVCH16952ADGGR
 CY74FCT16245TPVCT
 74AHCT245PW.118
 74LV245DB.118
 74LV245D.112
 74LVCR162245ZQLR

 SN74LVCR16245AZQLR
 MC100EP16MNR4G
 MC100LVEP16MNR4G
 714100R
 74HCT643N
 MC100EP16DTR2G
 5962-9221403MRA

 74ALVC164245PAG
 74FCT16245ATPVG
 74FCT16245ATPVG
 74FCT16245ETPAG
 74FCT16245CTSOG