Ordering Code:

Order Number	Package Number	Package Description
MM74HC4060M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC4060SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4060MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4060N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	Typ	Guaranteed Limit	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency			30	MHz
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay to Q_{4}	(Note 5)	40	20	ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay to any Q		16	40	ns
$\mathrm{t}_{\text {REM }}$	Minimum Reset Removal Time		10	20	ns
t_{W}	Minimum Pulse Width		10	16	ns

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-55$ to $125^{\circ} \mathrm{C}$	Units
				Typ	Guaranteed Limits			
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \hline 6 \\ 30 \\ 35 \end{gathered}$	$\begin{gathered} 5 \\ 24 \\ 28 \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ 24 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}$	Maximum Propagation Delay Clock to Q_{4}		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 120 \\ & 42 \\ & 35 \end{aligned}$	$\begin{gathered} 380 \\ 76 \\ 65 \end{gathered}$	$\begin{gathered} \hline 475 \\ 95 \\ 81 \end{gathered}$	$\begin{gathered} \hline 171 \\ 114 \\ 97 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay Reset to any Q		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 72 \\ & 24 \\ & 20 \end{aligned}$	$\begin{gathered} 240 \\ 48 \\ 41 \end{gathered}$	$\begin{gathered} \hline 302 \\ 60 \\ 51 \end{gathered}$	$\begin{gathered} \hline 358 \\ 72 \\ 61 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Between Stages Q_{n} to Q_{n+1}		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 125 \\ 25 \\ 21 \end{gathered}$	$\begin{gathered} 156 \\ 31 \\ 26 \end{gathered}$	$\begin{gathered} \hline 188 \\ 38 \\ 31 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {REM }}$	Minimum Reset Removal Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$	$\begin{gathered} 125 \\ 25 \\ 21 \end{gathered}$	$\begin{gathered} 150 \\ 30 \\ 25 \end{gathered}$	ns ns ns
t_{W}	Minimum Pulse Width		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 80 \\ & 16 \\ & 14 \end{aligned}$	$\begin{gathered} 100 \\ 20 \\ 17 \end{gathered}$	$\begin{aligned} & 120 \\ & 24 \\ & 20 \end{aligned}$	ns ns ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} 1000 \\ 500 \\ 400 \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$	Maximum Output Rise and Fall Time		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 30 \\ 10 \\ 9 \end{gathered}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 22 \\ & 19 \end{aligned}$	ns ns ns
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 6)	(per package)		55				pF
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance			5	10	10	10	pF

Note 6: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+l_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{S}=C_{P D} V_{C C} f+I_{C C}$.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
[^0]
X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM STK621-068C-E NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA

STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-
H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E LA6584M-MPB-E NVB60N06T4G
LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG
FW217A-TL-2WX MC33201DG KA78L05AZTA FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G
BTA25H-600CW3G LC89057W-VF4A-E CPH6531-TL-E NCP4683DSQ28T1G MC78L08ACP SA5230DR2G NCP694D25HT1G
CAT25020VE-GT3 MC10EP142FAG CAT1832L-G CAT93C56VP2I-GT3 NCP4625DSN50T1G

[^0]: Fairchild does not assume any responsibility for use of any circuitry described, no circuit patert licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

