FAIRCHILD

SEMICONDUCTOR

MM74HC4060 14 Stage Binary Counter

General Description

The MM74HC4060 is a high speed binary ripple carry counter. These counters are implemented utilizing advanced silicon-gate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS.

The MM74HC4060 is a 14-stage counter, which device increments on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input. The MM74HC4060 also has two additional inputs to enable easy connection of either an RC or crystal oscillator.

This device is pin equivalent to the CD4060. All inputs are protected from damage due to static discharge by protection diodes to V_{CC} and ground.

August 1984

Revised February 1999

Features

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2–6V
- Low input current: 1 µA maximum
- Low quiescent current: 80 µA maximum (74 Series)
- Output drive capability: 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC4060M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC4060SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC4060MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4060N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

	0
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{CD})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units				
Supply Voltage (V _{CC})	2	6	V				
DC Input or Output Voltage							
(V _{IN} , V _{OUT})	0	V _{CC}	V				
Operating Temperature Range (T _A)	-40	+85	°C				
Input Rise or Fall Times							
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns				
$V_{CC} = 4.5V$		500	ns				
$V_{CC} = 6.0V$		400	ns				
Note 1: Maximum Ratings are those values beyond which damage to the device may occur.							

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating: plastic "N" package:

Note 3: Power Dissipation temperature derating: plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter		Conditions	V	T _A = 25°C		$T_{A}=-40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol				v _{cc}	Тур		Guaranteed L	imits	Units
VIH	Minimum HIGH			2.0V		1.5	1.5	1.5	V
	Level Voltage			4.5V		3.15	3.15	3.15	V
	(Not Applicable to	Pins 9 & 10)		6.0V		4.2	4.2	4.2	V
VIL	Maximum LOW Le	evel		2.0V		0.5	0.5	0.5	V
	Input Voltage			4.5V		1.35	1.35	1.35	V
	(Not Applicable to Pins 9 & 10)			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Le	evel	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage		I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	1.9	V
				4.5V	4.5	4.4	4.4	4.4	V
				6.0V	6.0	5.9	5.9	5.9	V
	E	Except Pins	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	9	9&10	I _{OUT} ≤ 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
			I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
	F	Pins	$V_{IN} = V_{IH} \text{ or } V_{IL}$			3.98	3.84	3.7	V
	9	9 & 10	I _{OUT} = 0.4 mA			5.48	5.34	5.2	V
			I _{OUT} = 0.52 mA						
V _{OL}	Maximum LOW Level		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Output Voltage		$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
				4.5V	0	0.1	0.1	0.1	V
				6.0V	0	0.1	0.1	0.1	V
	E	Except Pins	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	9	9&10	I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
			I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
	F	Pins	$V_{IN} = V_{IH} \text{ or } V_{IL}$			0.26	0.33	0.4	V
	9	9 & 10	I _{OUT} = 0.4 mA			0.26	0.33	0.4	V
			I _{OUT} = 0.52 mA						
I _{IN}	Maximum Input Current		$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μA
Icc	Maximum Quiescent		$V_{IN} = V_{CC} or GND$						
	Supply Current		I _{OUT} = 0 μA	6.0V		8.0	80	160	μA

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

MM74HC4060

www.fairchildsemi.com

0
Q
0
4
C
Ť
4
N
5
5
<

AC Electrical Characteristics

$V_{CC} = 5V$, $T_A = 25^{\circ}$ C, $C_L = 15 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$								
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units			
f _{MAX}	Maximum Clock Frequency			30	MHz			
t _{PHL} , t _{PLH}	Maximum Propagation Delay to Q ₄	(Note 5)	40	20	ns			
t _{PHL} , t _{PLH}	Maximum Propagation Delay to any Q		16	40	ns			
t _{REM}	Minimum Reset Removal Time		10	20	ns			
t _W	Minimum Pulse Width		10	16	ns			

AC Electrical Characteristics

 $V_{CC}\,{=}\,2.0V$ to 6.0V, $C_L\,{=}\,50$ pF, $t_r\,{=}\,t_f\,{=}\,6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	Vcc	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
	raiameter		*cc	Тур		Guaranteed L	imits		
f _{MAX}	Maximum Operating		2.0V		6	5	4	MHz	
	Frequency		4.5V		30	24	20	MHz	
			6.0V		35	28	24	MHz	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	120	380	475	171	ns	
	Delay Clock to Q ₄		4.5V	42	76	95	114	ns	
			6.0V	35	65	81	97	ns	
t _{PHL}	Maximum Propagation		2.0V	72	240	302	358	ns	
	Delay Reset to any Q		4.5V	24	48	60	72	ns	
			6.0V	20	41	51	61	ns	
$t_{\text{PHL}},t_{\text{PLH}}$	Maximum Propagation		2.0V		125	156	188	ns	
	Delay Between Stages		4.5V		25	31	38	ns	
	Q _n to Q _{n+1}		6.0V		21	26	31	ns	
t _{REM}	Minimum Reset		2.0V		100	125	150	ns	
	Removal Time		4.5V		20	25	30	ns	
			6.0V		17	21	25	ns	
t _W	Minimum Pulse Width		2.0V		80	100	120	ns	
			4.5V		16	20	24	ns	
			6.0V		14	17	20	ns	
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	1000	ns	
	Fall Time		4.5V		500	500	500	ns	
			6.0V		400	400	400	ns	
t_{THL},t_{TLH}	Maximum Output Rise		2.0V	30	75	95	110	ns	
	and Fall Time		4.5V	10	15	19	22	ns	
			6.0V	9	13	16	19	ns	
C _{PD}	Power Dissipation	(per package)		55		1		pF	
	Capacitance (Note 6)								
C _{IN}	Maximum Input			5	10	10	10	pF	
	Capacitance								

Note 5: Typical Propagation delay time to any output can be calculated using: $t_P = 17+12(N-1)$ ns; where N is the number of the output, Q_W , at $V_{CC} = 5V$.

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2$ f+I_{CC} V_{CC} , and the no load dynamic current consumption, $I_S = C_{PD} V_{CC}$ f + I_{CC}.

www.fairchildsemi.com

5

www.fairchildsemi.com

6

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG FW217A-TL-2WX MC33201DG KA78L05AZTA FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E CPH6531-TL-E NCP4683DSQ28T1G MC78L08ACP SA5230DR2G NCP694D25HT1G CAT25020VE-GT3 MC10EP142FAG CAT1832L-G CAT93C56VP2I-GT3 NCP4625DSN50T1G