FAIRCHILD

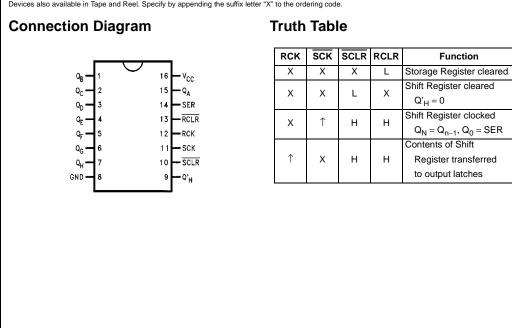
SEMICONDUCTOR

MM74HC594 8-Bit Shift Register with Output Registers

General Description

This high speed shift register utilizes advanced silicon-gate CMOS technology. This device possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads

This device contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Separate clocks and direct overriding clears are provided for both the shift register and the storage register. The shift register has a direct-overriding clear, serial input, and serial output (standard) pins for cascading. Both the shift register and storage register use positive-edge triggered clocks. If both clocks are connected together, the shift register state will always be one clock pulse ahead of the storage register.


The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

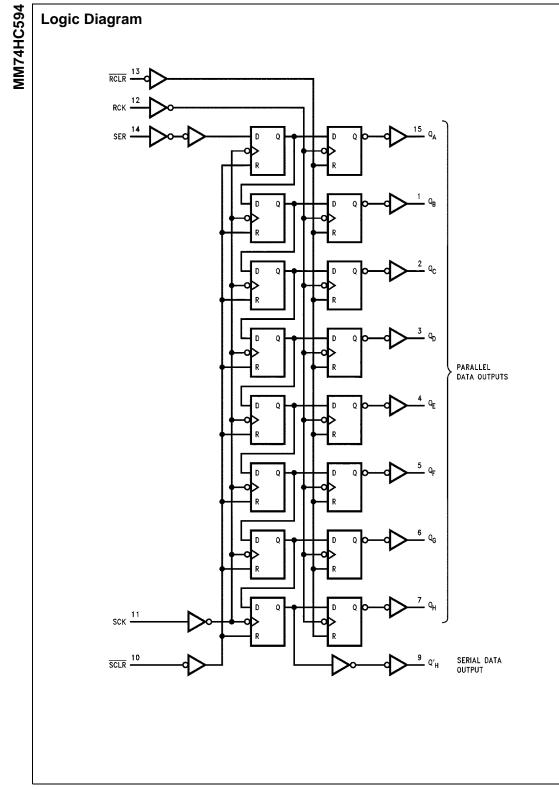
- Low quiescent current: 80 µA maximum
- Low input current: 1 µA maximum
- 8-bit serial-in, parallel-out shift register with storage
- Wide operating voltage range: 2V to 6V
- Cascadable
- Shift register has direct clear
- Guaranteed shift frequency: DC to30 MHz

Ordering Code:

Order Number	Package Number	Package Description
MM74HC594M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
MM74HC594N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Topo and Roal Specify	by appanding the suffix letter "X" to the ordering code

DS010915.prf © 1999 Fairchild Semiconductor Corporation

www.fairchildsemi.com


Function

 $\boldsymbol{Q}_N = \boldsymbol{Q}_{n-1}, \, \boldsymbol{Q}_0 = \boldsymbol{SER}$

Register transferred

to output latches

 $Q'_{H} = 0$

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operation Conditions

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V_{CC} +1.5V
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±35 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±70 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Min Max Units Supply Voltage (V_{CC}) 2 6 V DC Input or Output Voltage 0 V_{CC} V (V_{IN}, V_{OUT}) Operating Temperature Range (T_A) -40 +85 °C Input Rise or Fall Times $(t_r, t_f) \quad V_{CC} = 2.0V$ 1000 ns $V_{CC} = 4.5V$ 500 ns $V_{CC} = 6.0V$ 400 ns

MM74HC594

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating—plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Paramotor	Parameter Conditions	V _{cc}	$T_A = 25^{\circ}C$		$T_A = -40$ to $85^{\circ}C$	Units
Symbol	Farameter	Conditions	*CC	Typ Gua		aranteed Limits	
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	v
			4.5V	4.5	4.4	4.4	v
			6.0V	6.0	5.9	5.9	
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.7	3.98	3.84	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	
	Q _A thru Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		I _{OUT} ≤ 6.0 mA	4.5V	4.2	3.98	3.84	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
Output Vo	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	
			6.0V	0	0.1	0.1	
	Q' _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	
	Q _A thru Q _H	$V_{IN} = V_{IH} \text{ or } V_{IL}$					
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

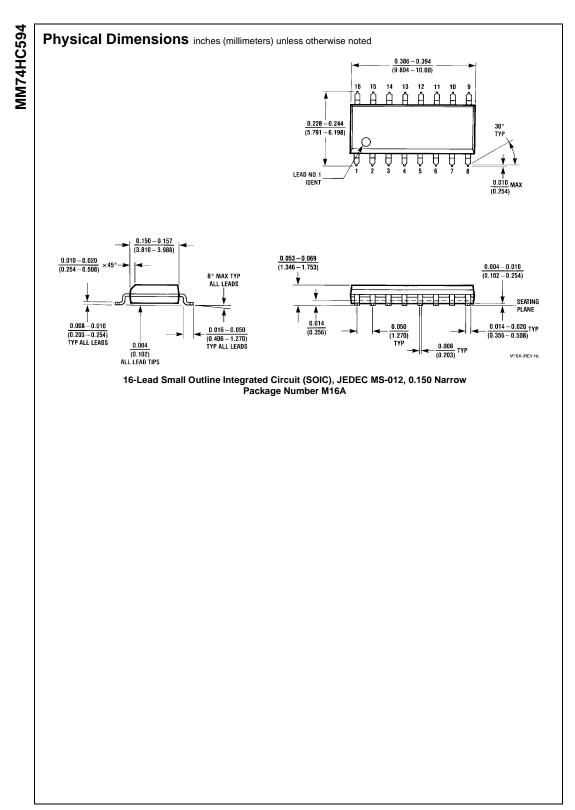
www.fairchildsemi.com

3

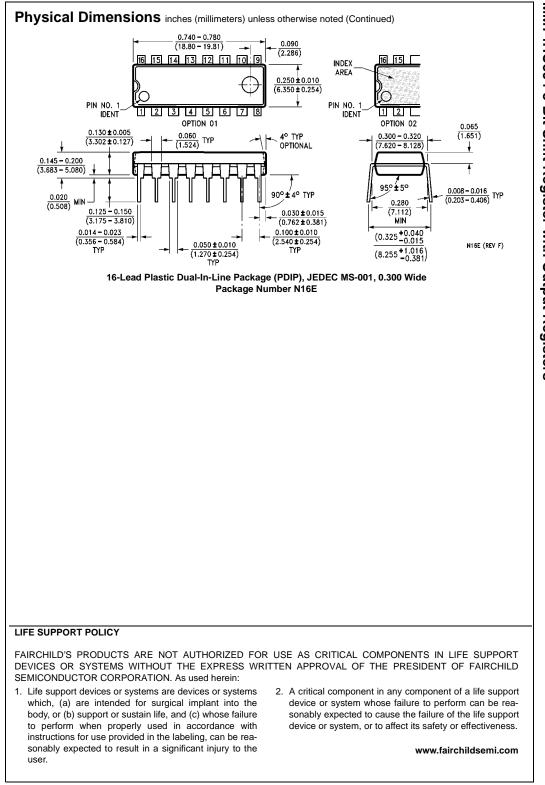
4
ດ
ŝ
C
Т
4
N
5
2

AC Electrical Characteristics

Symbol	Parameter	Conditions	Vcc	$T_A = 25^{\circ}C$		−40°C to +85°C	Units
Gymbol	i arameter	Conditions	•00	Тур	Gua	ranteed Limits	01111
f _{MAX}	Maximum Operating	C _L = 50 pF	2.0V		6	4.8	1
Fre	Frequency		4.5V		30	24	MH
			6.0V		35	28	
PHL, tPLH	Maximum Propagation Delay	C _L = 50 pF	2.0V		150	185	
from SCK to Q' _H		4.5V		30	37	ns	
			6.0V		25	31	
t _{PHL} , t _{PLH}	Maximum Propagation Delay	$C_{L} = 50 \text{ pF}$	2.0V		150	185	
	from RCK to Q _A thru Q _H	C _L = 150 pF	2.0V		200	250	ns
		$C_L = 50 \text{ pF}$	4.5V		30	37	
		C _L = 150 pF	4.5V		40	50	ns
		C _L = 50 pF	6.0V		25	31	
		C _L = 150 pF	6.0V		34	43	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay	-Cb.	2.0V		150	185	-
PAL, PLA	from $\overline{\text{SCLR}}$ to Q'_{H}		4.5V		30		ns
						37	115
	Maximum Propagation Dalass	C = 50 pF	6.0V		25	31 155	
t _{PHL}	Maximum Propagation Delay	C _L = 50 pF	2.0V		125		
	from RCLR to Q _A thru Q _H		4.5V		25	31	ns
			6.0V		21	26	
		C _L = 150 pF	2.0V		200	250	
			4.5V		40	50	ns
			6.0V		34	43	
t _S SCLR LOW	SCLR LOW to RCK		2.0V		50	63	
			4.5V		10	13	ns
			6.0V		9	11	
t _S RCLR HIGH to SC	RCLR HIGH to SCK		2.0V		5	5	
			4.5V		5	5	ns
			6.0V		5	5	
ts	Minimum Setup Time		2.0V		90	110	
0	from SER to SCK		4.5V		18	22	ns
			6.0V		15	19	
t _R	Minimum Removal Time		2.0V		20	20	
т	from SCLR to SCK		4.5V		10	10	ns
	Nom Seek to Sek		6.0V		10	10	113
4	Minimum Sotup Timo						
t _S	Minimum Setup Time		2.0V		90 18	110	
	from SCK to RCK		4.5V		18	22	ns
	Minimum Link Times		6.0V		15	19	
t _H	Minimum Hold Time		2.0V		5	5	
	SER to SCK		4.5V		5	5	ns
	Minimum Dulas Miller		6.0V		5	5	
t _W	Minimum Pulse Width		2.0V		100	125	
	of SCK or SCLR or		4.5V		20	25	ns
	RCK or RCLR		6.0V		17	21	
t _r , t _f	Maximum Input Rise and		2.0V		1000	1000	
	Fall Time, Clock		4.5V		500	500	ns
			6.0V		400	400	
t _{THL} , t _{TLH}	Maximum Output		2.0V		60	75	
	Rise and Fall Time		4.5V		12	15	ns
	Q _A - Q _H		6.0V		10	13	
t _{THL} , t _{TLH}	Maximum Output	1	2.0V		75	95	
THE TELL	Rise and Fall Time		4.5V		15	19	ns
	Q' _H	1	6.0V		13	16	


www.fairchildsemi.com

AC Electrical Characteristics (Continued)


	ectrical Character		(4)				
Symbol	Parameter	Conditions	V _{cc}	T _A = 25°C		–40°C to +85°C	Units
			*cc	Тур	Gua	aranteed Limits	Units
C _{PD}	Power Dissipation Capacitance,	$\overline{G} = V_{CC}$		90			pF
	Outputs Enabled (Note 5)	G = GND		150			
C _{IN}	Maximum Input Capacitance			5	10	10	pF
COUT	Maximum Output Capacitance			15	20	20	pF

Note 5: C_{PD} determines the no load dynamic power consumption, and the no load dynamic current consumption.

www.fairchildsemi.com

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G