FAIRCHILD

SEMICONDUCTOR TM

October 1987 Revised June 2001

MM88C29 • MM88C30 Quad Single-Ended Line Driver • Dual Differential Line Driver

General Description

The MM88C30 is a dual differential line driver that also performs the dual four-input NAND or dual four-input AND function. The absence of a clamp diode to $V_{\rm CC}$ in the input protection circuitry of the MM88C30 allows a CMOS user to interface systems operating at different voltage levels. Thus, a CMOS digital signal source can operate at a $V_{\rm CC}$ voltage greater than the $V_{\rm CC}$ voltage of the MM88C30 line driver. The differential output of the MM88C30 eliminates ground-loop errors.

The MM88C29 is a non-inverting single-wire transmission line driver. Since the output ON resistance is a low 20Ω typ., the device can be used to drive lamps, relays, solenoids, and clock lines, besides driving data lines.

Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.45 V_{CC} (typ.)
- Low output ON resistance: 20Ω (typ.)

Ordering Code:

Order Number	Package Number	Package Description	
MM88C29N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	
MM88C30M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow	
MM88C30N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	
Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.			

Connection Diagrams

© 2001 Fairchild Semiconductor Corporation DS005908

Absolute Maximum Ratings(Note 1)

Voltage at Any Pin (Note 2)	–0.3V to V _{CC} +16V
Operating Temperature Range	-40°C to +85°C
Storage Temperature	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Operating V _{CC} Range	3V to 15V
Absolute Maximum V _{CC}	18V

Average Current at Output	
MM88C30	50 mA
MM88C29	25 mA
Maximum Junction Temperature, T _j	150°C
Lead Temperature	
(Soldering, 10 seconds)	260°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

Note 2: AC Parameters are guaranteed by DC correlated testing.

DC Electrical Characteristics

Min/Max li	mits apply across temperature rang	e unless otherwise noted				
Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO 0	CMOS			•		
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5V$	3.5			V
		$V_{CC} = 10V$	8			V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5V$			1.5	V
		$V_{CC} = 10V$			2	V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15V, V_{IN} = 15V$		0.005	1	μA
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1	-0.005		μA
I _{CC}	Supply Current	$V_{CC} = 5V$		0.05	100	mA
OUTPUT D	RIVE					
ISOURCE	Output Source Current	$V_{OUT} = V_{CC} - 1.6V,$				
		$V_{CC} \ge 4.75V$, $T_j = 25^{\circ}C$	-47	-80		mA
		$T_j = 85^{\circ}C$	-32	-60		mA
	MM88C29	$V_{OUT} = V_{CC} - 0.8V$	-2	-20		mA
	MM88C30	$V_{CC} \ge 4.5V$				
I _{SINK}	Output Sink Current	$V_{OUT} = 0.4V, V_{CC} = 4.75V,$				
		$T_j = 25^{\circ}C$	9.5	22		mA
		$T_j = 85^{\circ}C$	8	18		mA
		$V_{OUT} = 0.4V, V_{CC} = 10V,$				
		$T_i = 25^{\circ}C$	19	40		mA
		$T_j = 125^{\circ}C$	15.5	33		mA
ISOURCE	Output Source Resistance	$V_{OUT} = V_{CC} - 1.6V,$				
		$V_{CC} \ge 4.75V$, $T_i = 25^{\circ}C$		20	34	Ω
		$T_j = 85^{\circ}C$		27	50	Ω
I _{SINK}	Output Sink Resistance	$V_{OUT} = 0.4V, V_{CC} = 4.75V,$				
		$T_j = 25^{\circ}C$		18	41	Ω
		$T_j = 85^{\circ}C$		22	50	Ω
		$V_{OUT} = 0.4V, V_{CC} = 10V,$				
		$T_i = 25^{\circ}C$		10	21	Ω
		$T_j = 85^{\circ}C$		12	26	Ω
	Output Resistance					
	Temperature Coefficient					
	Source			0.55		%/°C
	Sink			0.40		%/°C
θ_{JA}	Thermal Resistance			150		°C/W
	(N-Package)					
	1	ł	I			

MM88C29 • MM88C30

Symbol	Parameter	Conditions	Min	Тур	Max	Un
t _{pd}	Propagation Delay Time to					
	Logical "1" or "0"	(See Figure 1)				
	MM88C29	$V_{CC} = 5V$		80	200	n
		$V_{CC} = 10V$		35	100	n
	MM88C30	$V_{CC} = 5V$		110	350	n
		$V_{CC} = 10V$		50	150	n
t _{pd}	Differential Propagation Delay	$R_L = 100\Omega, \ C_L = 5000 \ pF$				
	Time to Logical "1" or "0"	(See Figure 2)				
	MM88C30	$V_{CC} = 5V$			400	n
		$V_{CC} = 10V$			150	n
CIN	Input Capacitance					
	MM88C29	(Note 3)		5.0		р
	MM88C30	(Note 3)		5.0		p
C _{PD}	Power Dissipation Capacitance					
	MM88C29	(Note 3)		150		р
	MM88C30	(Note 3)		200	i I	r

Note 3: Capacitance is guaranteed by periodic testing.

Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics application note AN-90 (CMOS Logic Databook).

www.fairchildsemi.com

6

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:

Other Similar products are found below :

1.5SMC82AT3G 74LCX574WM STK621-068C-E KAF-0402-ABA-CD-B2 NBXSBA017LN1TAG KAF-3200-ABA-CP-B2 STK621-728S-E AMIS30621AUA STK531U340A-E STK760-304-E FJAF6810DTU DBD250G STK621-713-E TIP115 LB11847-E NBXHBA017LN1TAG LV8736V-MPB-H NCP694H12HT1G LA4631VC-XE CAT1025WI-25-G NDF04N60ZG-001 LA78040B-S-E NGTB30N120IHLWG LA6584M-MPB-E NVB60N06T4G LA6245P-CL-TLM-E STK621-043D-E BTA30H-600CW3G NBXHBA017LNHTAG P6SMB100AT3G NCP1129AP100G LV8406T-TLM-E MC100EL13DWG NGTB30N60SWG FW217A-TL-2WX FGPF4533 MC33201DG KA78L05AZTA KA378R33TU FST3126MX LV4904V-MPB-E STK672-400 SBM30-03-TR-E NCP1398BDR2G BTA25H-600CW3G LC89057W-VF4A-E NGB8206ANTF4G NB7VQ58MMNG CPH6531-TL-E NCP4683DSQ28T1G