MMBT4403WT1G

Switching Transistor

PNP Silicon

Features

- Moisture Sensitivity Level: 1
- ESD Rating: Human Body Model; 4 kV , Machine Model; 400 V
- These Devices are Pb -Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-5.0	Vdc
Collector Current - Continuous	I_{C}	-600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	150	mW
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {өJA }}$	833	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

SC-70
CASE 419 STYLE 3

MARKING DIAGRAM

2T = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
MMBT4403WT1G	SC-70 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	-40	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CBO	-40	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=-0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{\text {(BR) }{ }^{\text {ebo }}}$	-5.0	-	Vdc
Base Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=-35 \mathrm{Vdc}$, $\mathrm{V}_{\text {EB }}=-0.4 \mathrm{Vdc}$)	$\mathrm{I}_{\text {beV }}$	-	-0.1	$\mu \mathrm{Adc}$
Collector Cutoff Current ($\mathrm{V}_{\text {CE }}=-35 \mathrm{Vdc}, \mathrm{V}_{\text {EB }}=-0.4 \mathrm{Vdc}$)	$\mathrm{I}_{\text {CEX }}$	-	-0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain $\begin{aligned} & \left(\begin{array}{l} \left(\mathrm{IC}=-0.1 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc}\right) \\ \left(\mathrm{IC}=-10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{VdC}\right) \\ \left.\left(\begin{array}{l} \mathrm{C} \end{array}\right)=-150 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right)(\text { Note } 1) \\ \left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc}\right) \end{array}\left(\begin{array}{l} \text { (Note 1 } \end{array}\right)\right. \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 30 \\ 60 \\ 100 \\ 100 \\ 20 \end{gathered}$	$\begin{gathered} - \\ - \\ \overline{-} \\ 300 \end{gathered}$	-
Collector-Emitter Saturation Voltage (Note 1) ($\left.\mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}\right)$ $\left(I_{C}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	$\begin{aligned} & -0.4 \\ & -0.75 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage (Note 1) ($\mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}$) $\left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right)$	$V_{B E \text { (sat) }}$	-0.75	$\begin{gathered} -0.95 \\ -1.3 \end{gathered}$	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=-20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	f_{T}	200	-	MHz
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	8.5	pF
Emitter-Base Capacitance $\left(\mathrm{V}_{\mathrm{BE}}=-0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{eb}	-	30	pF
Input Impedance ($\left.\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	h_{ie}	1.5	15	$\mathrm{k} \Omega$
Voltage Feedback Ratio $\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	h_{re}	0.1	8.0	$\mathrm{X} 10^{-4}$
Small-Signal Current Gain $\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	h_{fe}	60	500	-
Output Admittance $\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	h_{oe}	1.0	100	$\mu \mathrm{mhos}$

SWITCHING CHARACTERISTICS

Delay Time	$\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EB}}=-2.0 \mathrm{Vdc},\right. \\ & \left.\mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=-15 \mathrm{mAdc}\right) \end{aligned}$	t_{d}	-	15	ns
Rise Time		t_{r}	-	20	
Storage Time	$\begin{gathered} \left(\mathrm{V}_{\mathrm{CC}}=-30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc},\right. \\ \left.\mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=-15 \mathrm{mAdc}\right) \end{gathered}$	$\mathrm{t}_{\text {s }}$	-	225	ns
Fall Time		t_{f}	-	30	

1. Pulse Test: Pulse Width ≤ 300 us, Duty Cycle $\leq 2.0 \%$.

SWITCHING TIME EQUIVALENT TEST CIRCUIT

Figure 1. Turn-On Time
Figure 2. Turn-Off Time

MMBT4403WT1G

TRANSIENT CHARACTERISTICS

Figure 3. Capacitances

Figure 5. Turn-On Time

Figure 4. Charge Data

Figure 6. Rise Time

Figure 7. Storage Time

MMBT4403WT1G

SMALL-SIGNAL CHARACTERISTICS NOISE FIGURE
$V_{C E}=-10 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; Bandwidth $=1.0 \mathrm{~Hz}$

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
This group of graphs illustrates the relationship between h_{fe} and other " h " parameters for this series of transistors. To obtain these curves, a high-gain and a low-gain unit were selected from the MMBT4403WT1 lines, and the same units were used to develop the correspondingly numbered curves on each graph.

Figure 10. Current Gain

Figure 12. Voltage Feedback Ratio

Figure 11. Input Impedance

Figure 13. Output Admittance

MMBT4403WT1G

STATIC CHARACTERISTICS

Figure 14. DC Current Gain vs. Collector Current

I_{B}, BASE CURRENT (mA)
Figure 16. Saturation Region

I_{C}, COLLECTOR CURRENT (mA)
Figure 18. Base Emitter Saturation Voltage vs. Collector Current

Figure 15. DC Current Gain vs. Collector Current

I_{c}, COLLECTOR CURRENT (mA)
Figure 17. Collector Emitter Saturation Voltage vs. Collector Current

I_{C}, COLLECTOR CURRENT (mA)
Figure 19. Base-Emitter Turn-On Voltage vs. Collector Current

MMBT4403WT1G

STATIC CHARACTERISTICS

Figure 20. Safe Operating Area

Figure 21. Temperature Coefficients

SCALE 4:1

NDTES:

1. DIMENSIGNING AND TQLERANCING PER ASME Y14.5M, 1982.
2. CDNTRDLLING DIMENSIDN: INCH

DIM	MILLIMETERS			INCHES		
	MIN.	NIM.	MAX.	MIN.	NDM.	MAX.
A	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
AL	0.70 REF			0.028 BSC		
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
H_{E}	2.00	2.10	2.40	0.079	0.083	0.095

SC-70 (SOT-323)

CASE 419
ISSUE P

XX = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package

GENERIC
MARKING DIAGRAM

pase refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

CANCELLED
STYLE 2:
PIN 1. ANODE
2. N.C.

STYLE 3:
PIN 1. BASE
2. EMITTER

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE

STYLE 8:
PIN 1. GATE
2. SOURCE
3. DRAIN

STYLE 9 :
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE-CATHODE

STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SC-70 (SOT-323)		PAGE 1 OF 1

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bipolar Transistors - BJT category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
619691C MCH4017-TL-H BC546/116 BC557/116 BSW67A NTE158 NTE187A NTE195A NTE2302 NTE2330 NTE63 C4460 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA2126-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMMTA92QTA 2N2369ADCSM 2SC2412KT146S 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E US6T6TR 732314D CMXT3906 TR CPH3121-TL-E CPH6021-TL-H 873787E IMZ2AT108 UMX21NTR EMT2T2R MCH6102-TL-E FP204-TL-E NJL0302DG 2N3583 2SA1434-TB-E 2SC3143-4-TB-E 2SD1621S-TD-E NTE103 30A02MH-TL-E NSV40301MZ4T1G NTE101 NTE13 NTE15

