MMBT6427LT1G, SMMBT6427LT1G

Darlington Transistor

NPN Silicon

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	40	Vdc
Collector - Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	40	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\text {EBO }}$	12	Vdc
Collector Current - Continuous	I_{C}	500	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board,	P_{D}		
(Note 1) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			
Derate above $25^{\circ} \mathrm{C}$			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $F R-5=1.0 \times 0.75 \times 0.062$ in
2. Alumina $=0.4 \times 0.3 \times 0.024$ in. 99.5% alumina.

ON Semiconductor ${ }^{\text {® }}$
www.onsemi.com
SOT-23 (TO-236)

MARKING DIAGRAM

1V = Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping †
MMBT6427LT1G	SOT-23 (Pb-Free)	3,000 Tape \& Reel
SMMBT6427LT1G	SOT-23 (Pb-Free)	3,000 Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MMBT6427LT1G, SMMBT6427LT1G

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
$\begin{aligned} & \text { Collector-Emitter Breakdown Voltage } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	$\mathrm{V}_{\text {(BR)CEO }}$	40	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=100 \mu A d c, I_{E}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CBO	40	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {EBO }}}$	12	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=25 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$I_{\text {ces }}$	-	1.0	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\text {cbo }}$	-	50	nAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {ebo }}$	-	50	nAdc

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 10,000 \\ & 20,000 \\ & 14,000 \end{aligned}$	$\begin{aligned} & 100,000 \\ & 200,000 \\ & 140,000 \end{aligned}$	-
$\begin{aligned} & \text { Collector-Emitter Saturation Voltage } \\ & \left(I_{C}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{mAdc}\right) \\ & \left(I_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{CE}(\text { sat) }}{ }^{(3)}$	-	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$	Vdc
Base-Emitter Saturation Voltage $\left(I_{C}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	2.0	Vdc
$\begin{aligned} & \text { Base-Emitter On Voltage } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{V}_{\mathrm{BE} \text { (on) }}$	-	1.75	Vdc

SMALL-SIGNAL CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {obo }}$	-	7.0	pF
Input Capacitance $\left(\mathrm{V}_{\mathrm{EB}}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ibo }}$	-	15	pF
Current Gain - High Frequency $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	$\left\|\mathrm{h}_{\text {fe }}\right\|$	1.3	-	Vdc
Noise Figure $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=100 \mathrm{k} \Omega, \mathrm{f}=1.0 \mathrm{kHz}\right)$	NF	-	10	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $=2.0 \%$.

MMBT6427LT1G, SMMBT6427LT1G

Figure 1. Transistor Noise Model

NOISE CHARACTERISTICS

$$
\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
$$

Figure 2. Noise Voltage

Figure 4. Total Wideband Noise Voltage

Figure 3. Noise Current

Figure 5. Wideband Noise Figure

MMBT6427LT1G, SMMBT6427LT1G

SMALL-SIGNAL CHARACTERISTICS

Figure 6. Capacitance

Figure 8. DC Current Gain

Figure 10. "On" Voltages

Figure 7. High Frequency Current Gain

Figure 9. Collector Saturation Region

Figure 11. Temperature Coefficients

MMBT6427LT1G, SMMBT6427LT1G

Figure 12. Thermal Response

Design Note: Use of Transient Thermal Resistance Data

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Darlington Transistors category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
NJVMJD128T4G 281287X BDV64B NJVMJD117T4G LB1205-L-E 2N6053 MPSA14 TIP140 MPSA13 TIP127L-BP 2N6383
ULN2003ACM/TR 2N7371 2N6058 2N6059 2N6051 MJ2501 MJ3001 2SB1560 2SB852KT146B 2SD2560 TIP112TU BCV27 MMBTA13-TP MMSTA28T146 NTE2557 NJVNJD35N04T4G MPSA29-D26Z FJB102TM BSP61H6327XTSA1 BU941ZPFI

2SD1980TL NTE2350 NTE245 NTE246 NTE2649 NTE46 NTE98 ULN2003ADR2G NTE2344 NTE2349 NTE2405 NTE243 NTE244 NTE247 NTE248 NTE249 NTE253 NTE2548 NTE261

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

