## 40 Watt Peak Power Zener Surge Protection Device <br> SC-70 Dual Common Cathode Zeners

## MMBZ27VCW

These dual monolithic silicon zener diodes are designed for applications requiring transient overvoltage protection capability. They are intended for use in voltage and ESD sensitive equipment such as computers, printers, business machines, communication systems, medical equipment and other applications. Their dual junction common cathode design protects two separate lines using only one package. These devices are ideal for situations where board space is at a premium.

## Specification Features:

- SC-70 Package Allows Either Two Separate Unidirectional Configurations or a Single Bidirectional Configuration
- Working Peak Reverse Voltage Range - 22 V
- Standard Zener Breakdown Voltage - 27 V
- Peak Power - 40 W @ 1.0 ms (Bidirectional), per Figure 4 Waveform
- ESD Rating of Class N (exceeding 16 kV ) per the Human Body Model
- Low Leakage < 100 nA
- Flammability Rating: UL 94 V-O
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant


## Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds

ON Semiconductor ${ }^{\circledR}$ www.onsemi.com


PIN 1. ANODE
2. ANODE
3. CATHODE


ORDERING INFORMATION

| Device | Package | Shipping ${ }^{\dagger}$ |
| :---: | :---: | :---: |
| MMBZ27VCWT1G | SC-70 <br> (Pb-Free) |  <br> Reel |
| SZMMBZ27VCWT1G | SC-70 <br> (Pb-Free) |  <br> Reel |
| MMBZ27VCWT3G | SC-70 <br> (Pb-Free) |  <br> Reel |
| SZMMBZ27VCWT3G | SC-70 <br> (Pb-Free) |  <br> Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| Peak Power Dissipation @ 1.0 ms (Note 1) @ $\mathrm{T}_{\mathrm{L}} \leq 25^{\circ} \mathrm{C}$ | $P_{p k}$ | 40 | Watts |
| Total Power Dissipation on FR-5 Board (Note 2) @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$ | $\mathrm{P}_{\mathrm{D}}$ | $\begin{array}{r} 200 \\ 1.6 \end{array}$ | $\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$ |
| Thermal Resistance Junction-to-Ambient | $\mathrm{R}_{\theta \mathrm{JA}}$ | 618 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Junction and Storage Temperature Range | $\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$ | -55 to +150 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Nonrepetitive current pulse per Figure 4 and derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ per Figure 5.
2. $F R-5=1.0 \times 0.75 \times 0.62 \mathrm{in}$.

## ELECTRICAL CHARACTERISTICS

( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or 2 and 3 )

| Symbol | Parameter |
| :---: | :--- |
| $\mathrm{I}_{\mathrm{PP}}$ | Maximum Reverse Peak Pulse Current |
| $\mathrm{V}_{\mathrm{C}}$ | Clamping Voltage @ $\mathrm{I}_{\mathrm{PP}}$ |
| $\mathrm{V}_{\mathrm{RWM}}$ | Working Peak Reverse Voltage |
| $\mathrm{I}_{\mathrm{R}}$ | Maximum Reverse Leakage Current @ $\mathrm{V}_{\mathrm{RWM}}$ |
| $\mathrm{V}_{\mathrm{BR}}$ | Breakdown Voltage @ $\mathrm{I}_{\mathrm{T}}$ |
| $\mathrm{I}_{\mathrm{T}}$ | Test Current |
| $\mathrm{V}_{\mathrm{BR}}$ | Maximum Temperature Coefficient of $\mathrm{V}_{\mathrm{BR}}$ |
| $\mathrm{I}_{\mathrm{F}}$ | Forward Current |
| $\mathrm{V}_{\mathrm{F}}$ | Forward Voltage @ $\mathrm{I}_{\mathrm{F}}$ |



ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3 )
( $\mathrm{V}_{\mathrm{F}}=1.1 \mathrm{~V}$ Max @ $\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$ )

| Device | Device Marking | $\mathrm{V}_{\text {RWM }}$ | $\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{RWM}}$ | Breakdown Voltage |  |  |  | VC @ IPP (Note 4) |  | $\mathrm{V}_{\mathrm{BR}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{V}_{\text {BR }}$ (Note 3) (V) |  |  | @ IT | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{I}_{\text {PP }}$ |  |
|  |  | Volts | nA | Min | Nom | Max | mA | V | A | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| MMBZ27VCWT1G, SZMMBZ27VCWT1G, MMBZ27VCWT3G, SZMMBZ27VCWT3G | AC | 22 | 50 | 25.65 | 27 | 28.35 | 1.0 | 38 | 1.0 | 26 |

3. $V_{B R}$ measured at pulse test current $I_{T}$ at an ambient temperature of $25^{\circ} \mathrm{C}$.
4. Surge current waveform per Figure 4 and derate per Figure 5

MMBZ27VCW
TYPICAL CHARACTERISTICS


Figure 1. Typical Breakdown Voltage versus Temperature


Figure 2. Typical Leakage Current versus Temperature


Figure 4. Pulse Waveform


Figure 3. Steady State Power Derating Curve


Figure 5. Pulse Derating Curve

## MMBZ27VCW

## TYPICAL APPLICATIONS

 located in each ECU ( $\mathrm{C}_{\text {Load }}$ needs to be reduced accordingly) or at a central point near the DLC.

## Figure 6. Single Wire CAN Network

Figure is the recommended solution for transient EMI/ESD protection. This circuit is shown in the Society of Automotive Engineers February, 2000 J2411 "Single Wire CAN Network for Vehicle Applications" specification (Figure 6, page 11). Note: the dual common anode zener configuration shown above is electrically equivalent to a dual common cathode zener configuration.


## SCALE 4:1



NDTES:

1. DIMENSIGNING AND TQLERANCING PER ASME Y14.5M, 1982.
2. CDNTRDLLING DIMENSIDN: INCH

| DIM | MILLIMETERS |  |  | INCHES |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | MIN. | NIM. | MAX. | MIN. | NDM. | MAX. |
| A | 0.80 | 0.90 | 1.00 | 0.032 | 0.035 | 0.040 |
| A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 |
| AL | 0.70 REF |  |  | 0.028 BSC |  |  |
| b | 0.30 | 0.35 | 0.40 | 0.012 | 0.014 | 0.016 |
| c | 0.10 | 0.18 | 0.25 | 0.004 | 0.007 | 0.010 |
| D | 1.80 | 2.10 | 2.20 | 0.071 | 0.083 | 0.087 |
| E | 1.15 | 1.24 | 1.35 | 0.045 | 0.049 | 0.053 |
| e | 1.20 | 1.30 | 1.40 | 0.047 | 0.051 | 0.055 |
| e1 | 0.65 BSC |  |  | 0.026 BSC |  |  |
| L | 0.20 | 0.38 | 0.56 | 0.008 | 0.015 | 0.022 |
| $H_{E}$ | 2.00 | 2.10 | 2.40 | 0.079 | 0.083 | 0.095 |



## SC-70 (SOT-323)

CASE 419
ISSUE P


XX = Specific Device Code
M = Date Code

- $\quad=$ Pb-Free Package

GENERIC
MARKING DIAGRAM

pase refer to device data sheet for actual part marking. $\mathrm{Pb}-$ Free indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.


CANCELLED
STYLE 2:
PIN 1. ANODE
2. N.C.

STYLE 3:
PIN 1. BASE
2. EMITTER

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE
STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE

STYLE 8:
PIN 1. GATE
2. SOURCE
3. DRAIN

STYLE 9 :
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE-CATHODE

STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE

| DOCUMENT NUMBER: | 98ASB42819B | Electronic versions are uncontrolled except when accessed directly from the Document Repository. <br> Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |  |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-70 (SOT-323) |  | PAGE 1 OF 1 |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for ESD Suppressors / TVS Diodes category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
60KS200C D12V0H1U2WS-7 D18V0L1B2LP-7B 82356050220 D5V0M5U6V-7 NTE4902 P4KE27CA P6KE11CA P6KE39CA-TP P6KE8.2A SA110CA SA60CA SA64CA SMBJ12CATR SMBJ8.0A SMLJ30CA-TP ESD101-B1-02ELS E6327 ESD112-B1-02EL E6327 ESD119B1W01005E6327XTSA1 ESD5V0J4-TP ESD5V0L1B02VH6327XTSA1 ESD7451N2T5G 19180-510 CPDT-5V0USP-HF 3.0SMCJ33CA-F 3.0SMCJ36A-F HSPC16701B02TP D3V3Q1B2DLP3-7 D55V0M1B2WS-7 DESD5V0U1BL-7B DRTR5V0U4SL-7 SCM1293A-04SO ESD200-B1-CSP0201 E6327 ESD203-B1-02EL E6327 SM12-7 SMF8.0A-TP SMLJ45CA-TP CEN955 W/DATA 8235012056082356240030 VESD12A1A-HD1-GS08 CPDUR5V0R-HF CPDUR24V-HF CPDQC5V0U-HF CPDQC5V0USP-HF CPDQC5V0-HF D1213A-01LP4-7B D1213A-02WL-7 ESDLIN1524BJ-HQ 5KP100A

