MMSZ4xxxT1G Series, SZMMSZ4xxxT1G Series

Zener Voltage Regulators
 500 mW, Low Izt SOD-123 Surface Mount

Three complete series of Zener diodes are offered in the convenient, surface mount plastic SOD-123 package. These devices provide a convenient alternative to the leadless 34 -package style.

Features

- 500 mW Rating on FR-4 or FR-5 Board
- Wide Zener Reverse Voltage Range -1.8 V to 43 V
- Low Reverse Current (IZT) - $50 \mu \mathrm{~A}$
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- ESD Rating of Class 3 ($>16 \mathrm{kV}$) per Human Body Model
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case
FINISH: Corrosion resistant finish, easily solderable
MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:
$260^{\circ} \mathrm{C}$ for 10 Seconds
POLARITY: Cathode indicated by polarity band
FLAMMABILITY RATING: UL 94 V-0

MAXIMUM RATINGS

Rating	Symbol	Max	Units
Total Power Dissipation on FR-5 Board, (Note 1) @ $\mathrm{T}_{\mathrm{L}}=75^{\circ} \mathrm{C}$ Derated above $75^{\circ} \mathrm{C}$	P_{D}	500	mW
Thermal Resistance, (Note 2) Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	340	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, (Note 2) Junction-to-Lead	$\mathrm{R}_{\theta \mathrm{JL}}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature Range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. $F R-5=3.5 \times 1.5$ inches, using the minimum recommended footprint.
2. Thermal Resistance measurement obtained via infrared Scan Method.
 download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

SOD-123
CASE 425
STYLE 1

MARKING DIAGRAM

xx = Device Code (Refer to page 3)
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping †
MMSZ4xxxT1G	SOD-123 (Pb-Free)	$3,000 /$ Tape \& Reel
SZMMSZ4xxxT1G	SOD-123 (Pb-Free)	$3,000 /$ Tape \& Reel
MMSZ4xxxT3G	SOD-123 (Pb-Free)	$10,000 /$ Tape \& Reel
SZMMSZ4xxxT3G	SOD-123 (Pb-Free)	$10,000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DEVICE MARKING INFORMATION
See specific marking information in the device marking column of the Electrical Characteristics table on page 3 of this data sheet.

MMSZ4xxxT1G Series, SZMMSZ4xxxT1G Series

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless
otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V} \mathrm{Max}$. @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$)

Symbol	Parameter
V_{Z}	Reverse Zener Voltage @ I_{ZT}
I_{ZT}	Reverse Current
I_{R}	Reverse Leakage Current @ V_{R}
V_{R}	Reverse Voltage
I_{F}	Forward Current
V_{F}	Forward Voltage @ I_{F}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted.
Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted, $\mathrm{V}_{\mathrm{F}}=0.9 \mathrm{~V}$ Max. @ $\left.\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\right)$

Device*	Device Marking	Zener Voltage (Note 3)				Leakage Current$\mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R}}$	
		V_{Z} (Volts)			@ İT		
		Min	Nom	Max	$\mu \mathrm{A}$	$\mu \mathrm{A}$	Volts
MMSZ4678T1G	CC	1.71	1.8	1.89	50	7.5	1
MMSZ4679T1G	CD	1.90	2.0	2.10	50	5	1
MMSZ4680T1G	CE	2.09	2.2	2.31	50	4	1
MMSZ4681T1G	CF	2.28	2.4	2.52	50	2	1
MMSZ4682T1G	CH	2.565	2.7	2.835	50	1	1
MMSZ4683T1G	CJ	2.85	3.0	3.15	50	0.8	1
MMSZ4684T1G	CK	3.13	3.3	3.47	50	7.5	1.5
MMSZ4685T1G	CM	3.42	3.6	3.78	50	7.5	2
MMSZ4686T1G	CN	3.70	3.9	4.10	50	5	2
MMSZ4687T1G	CP	4.09	4.3	4.52	50	4	2
SZMMSZ4687T1G	CG6	4.09	4.3	4.52	50	4	2
MMSZ4688T1G	CT	4.47	4.7	4.94	50	10	3
MMSZ4689T1G	CU	4.85	5.1	5.36	50	10	3
MMSZ4690T1G/T3G	CV	5.32	5.6	5.88	50	10	4
MMSZ4691T1G	CA	5.89	6.2	6.51	50	10	5
MMSZ4692T1G	CX	6.46	6.8	7.14	50	10	5.1
MMSZ4693T1G	CY	7.13	7.5	7.88	50	10	5.7
MMSZ4694T1G	CZ	7.79	8.2	8.61	50	1	6.2
MMSZ4695T1G	DC	8.27	8.7	9.14	50	1	6.6
MMSZ4696T1G	DD	8.65	9.1	9.56	50	1	6.9
MMSZ4697T1G	DE	9.50	10	10.50	50	1	7.6
MMSZ4698T1G	DF	10.45	11	11.55	50	0.05	8.4
MMSZ4699T1G	DH	11.40	12	12.60	50	0.05	9.1
MMSZ4700T1G	DJ	12.35	13	13.65	50	0.05	9.8
MMSZ4701T1G	DK	13.30	14	14.70	50	0.05	10.6
MMSZ4702T1G	DM	14.25	15	15.75	50	0.05	11.4
MMSZ4703T1G ${ }^{\dagger}$	DN	15.20	16	16.80	50	0.05	12.1
MMSZ4704T1G	DP	16.15	17	17.85	50	0.05	12.9
MMSZ4705T1G	DT	17.10	18	18.90	50	0.05	13.6
MMSZ4706T1G	DU	18.05	19	19.95	50	0.05	14.4
MMSZ4707T1G	DV	19.00	20	21.00	50	0.01	15.2
MMSZ4708T1G	DA	20.90	22	23.10	50	0.01	16.7
MMSZ4709T1G	DX	22.80	24	25.20	50	0.01	18.2
MMSZ4710T1G	DY	23.75	25	26.25	50	0.01	19.0
MMSZ4711T1G ${ }^{\dagger}$	EA	25.65	27	28.35	50	0.01	20.4
MMSZ4712T1G	EC	26.60	28	29.40	50	0.01	21.2
MMSZ4713T1G	ED	28.50	30	31.50	50	0.01	22.8
MMSZ4714T1G	EE	31.35	33	34.65	50	0.01	25.0
MMSZ4715T1G	EF	34.20	36	37.80	50	0.01	27.3
MMSZ4716T1G	EH	37.05	39	40.95	50	0.01	29.6
MMSZ4717T1G	EJ	40.85	43	45.15	50	0.01	32.6

3. Nominal Zener voltage is measured with the device junction in thermal equilibrium at $\mathrm{T}_{\mathrm{L}}=30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.
*Include SZ-prefix devices where applicable.
\dagger MMSZ4703 and MMSZ4711 Not Available in 10,000/Tape \& Reel

MMSZ4xxxT1G Series, SZMMSZ4xxxT1G Series

TYPICAL CHARACTERISTICS

Figure 1. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 3. Steady State Power Derating

Figure 2. Temperature Coefficients (Temperature Range $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$)

Figure 4. Maximum Nonrepetitive Surge Power

Figure 5. Effect of Zener Voltage on Zener Impedance

MMSZ4xxxT1G Series, SZMMSZ4xxxT1G Series

TYPICAL CHARACTERISTICS

Figure 6. Typical Capacitance

Figure 8. Zener Voltage versus Zener Current (V_{Z} Up to 12 V)

Figure 7. Typical Leakage Current

Figure 9. Zener Voltage versus Zener Current (12 V to 91 V)

SCALE 5:1

SOLDERING FOOTPRINT*

$$
\text { SCALE 10:1 } \quad\left(\frac{\mathrm{mm}}{\text { inches }}\right)
$$

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOD-123
CASE 425-04
ISSUE G
DATE 07 OCT 2009

NOTES:

1. Dimensioning and tolerancing per ansi Y14.5M, 1982
2. CONTROLING DIMENSION: INCH.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
	0.94	1.17	1.35	0.037	0.046	0.053
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.51	0.61	0.71	0.020	0.024	0.028
C	---	---	0.15	---	---	0.006
D	1.40	1.60	1.80	0.055	0.063	0.071
E	2.54	2.69	2.84	0.100	0.106	0.112
H $_{\text {E }}$	3.56	3.68	3.86	0.140	0.145	0.152
L	0.25	---	---	0.010	---	---
$\boldsymbol{\theta}$	0°	---	10°	0°	---	10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " $\stackrel{\text { " }}{ }$, may or may not be present.

STYLE 1 :
PIN 1. CATHODE 2. ANODE

| DOCUMENT NUMBER: | 98ASB42927B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOD-123 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for ON Semiconductor manufacturer:
Other Similar products are found below :
1.5SMC82AT3G 74LCX574WM FST3126MX MC78L08ACP MMBTA42 FDD8424H_F085A NTZD3154NT1H KSA1015GRTA BAT42XV2 007851X 702607H MC33079DG MC34072DR2G MC34151P MC78L08ACDG 74VHC14MX 74VHC541MTCX FAN3111ESX FDMC86262P FDMD8530 FEBFL7733A_L53U021A FEBFOD8333 MM74HC138MX MMBZ5233B FOD3120SD FPAB30BH60B FQP2N80 1.5KE16AG MT9V115EBKSTCH-GEVB NB6L295MNGEVB NB7L1008MNGEVB NC7WZ126K8X NCL30000LED2GEVB NCN9252MUGEVB NCP1075PSRGEVB NCV4274CDT33RKG NCV887100D1R2G NDT2955 1N5339B NSIC2030JBT3G NV890231MWTXGEVB CAT4101AEVB KA7818ETU S3JB 2SC5569-TD-E FEBFL7734_L55L008A 1V5KE39CA FNB33060T AMIS30422DBGEVB AMIS3062XGEVK

